These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21425804)

  • 1. Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs.
    Beckham GT; Matthews JF; Peters B; Bomble YJ; Himmel ME; Crowley MF
    J Phys Chem B; 2011 Apr; 115(14):4118-27. PubMed ID: 21425804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale.
    Beckham GT; Crowley MF
    J Phys Chem B; 2011 Apr; 115(15):4516-22. PubMed ID: 21452798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction.
    Klein HC; Cheng X; Smith JC; Shen T
    J Chem Phys; 2011 Aug; 135(8):085106. PubMed ID: 21895224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils.
    Gross AS; Chu JW
    J Phys Chem B; 2010 Oct; 114(42):13333-41. PubMed ID: 20883004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio study of molecular interactions in cellulose Iα.
    Devarajan A; Markutsya S; Lamm MH; Cheng X; Smith JC; Baluyut JY; Kholod Y; Gordon MS; Windus TL
    J Phys Chem B; 2013 Sep; 117(36):10430-43. PubMed ID: 23937275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose.
    Bellesia G; Chundawat SP; Langan P; Redondo A; Dale BE; Gnanakaran S
    J Phys Chem B; 2012 Jul; 116(28):8031-7. PubMed ID: 22712833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex.
    Zhong L; Matthews JF; Hansen PI; Crowley MF; Cleary JM; Walker RC; Nimlos MR; Brooks CL; Adney WS; Himmel ME; Brady JW
    Carbohydr Res; 2009 Oct; 344(15):1984-92. PubMed ID: 19699474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ.
    Lee CM; Mohamed NM; Watts HD; Kubicki JD; Kim SH
    J Phys Chem B; 2013 Jun; 117(22):6681-92. PubMed ID: 23738844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent changes in hydrogen bonds in cellulose Ialpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Ibeta.
    Watanabe A; Morita S; Ozaki Y
    Biomacromolecules; 2007 Sep; 8(9):2969-75. PubMed ID: 17705428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Ibeta.
    Nishiyama Y; Johnson GP; French AD; Forsyth VT; Langan P
    Biomacromolecules; 2008 Nov; 9(11):3133-40. PubMed ID: 18855441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.
    Mulakala C; Reilly PJ
    Proteins; 2005 Sep; 60(4):598-605. PubMed ID: 16001418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose-builder: a toolkit for building crystalline structures of cellulose.
    Gomes TC; Skaf MS
    J Comput Chem; 2012 May; 33(14):1338-46. PubMed ID: 22419406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular origins of twist in cellulose I-beta.
    Bu L; Himmel ME; Crowley MF
    Carbohydr Polym; 2015 Jul; 125():146-52. PubMed ID: 25857969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes.
    Wang Y; Lian J; Wan J; Ma Y; Zhang Y
    Carbohydr Polym; 2015 Nov; 133():94-103. PubMed ID: 26344260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.
    Hoja J; Maurer RJ; Sax AF
    J Phys Chem B; 2014 Jul; 118(30):9017-27. PubMed ID: 25036217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase.
    Beckham GT; Matthews JF; Bomble YJ; Bu L; Adney WS; Himmel ME; Nimlos MR; Crowley MF
    J Phys Chem B; 2010 Jan; 114(3):1447-53. PubMed ID: 20050714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study.
    Bergenstråhle M; Thormann E; Nordgren N; Berglund LA
    Langmuir; 2009 Apr; 25(8):4635-42. PubMed ID: 19231815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.