These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 21425833)
1. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI. Baker P; Carere J; Seah SY Biochemistry; 2011 May; 50(17):3559-69. PubMed ID: 21425833 [TBL] [Abstract][Full Text] [Related]
2. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Wang W; Baker P; Seah SY Biochemistry; 2010 May; 49(17):3774-82. PubMed ID: 20364820 [TBL] [Abstract][Full Text] [Related]
3. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI. Baker P; Carere J; Seah SY Biochemistry; 2012 Jun; 51(22):4558-67. PubMed ID: 22574886 [TBL] [Abstract][Full Text] [Related]
4. Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Carere J; Baker P; Seah SY Biochemistry; 2011 Oct; 50(39):8407-16. PubMed ID: 21838275 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an aldolase-dehydrogenase complex that exhibits substrate channeling in the polychlorinated biphenyls degradation pathway. Baker P; Pan D; Carere J; Rossi A; Wang W; Seah SY Biochemistry; 2009 Jul; 48(27):6551-8. PubMed ID: 19476337 [TBL] [Abstract][Full Text] [Related]
6. Purification and biochemical characterization of a pyruvate-specific class II aldolase, HpaI. Wang W; Seah SY Biochemistry; 2005 Jul; 44(27):9447-55. PubMed ID: 15996099 [TBL] [Abstract][Full Text] [Related]
7. Rational design of stereoselectivity in the class II pyruvate aldolase BphI. Baker P; Seah SY J Am Chem Soc; 2012 Jan; 134(1):507-13. PubMed ID: 22081904 [TBL] [Abstract][Full Text] [Related]
8. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
9. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
11. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis. Carere J; McKenna SE; Kimber MS; Seah SY Biochemistry; 2013 May; 52(20):3502-11. PubMed ID: 23614353 [TBL] [Abstract][Full Text] [Related]
12. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
13. Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases. Wang W; Mazurkewich S; Kimber MS; Seah SY J Biol Chem; 2010 Nov; 285(47):36608-15. PubMed ID: 20843800 [TBL] [Abstract][Full Text] [Related]
14. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity. Coincon M; Wang W; Sygusch J; Seah SY J Biol Chem; 2012 Oct; 287(43):36208-21. PubMed ID: 22908224 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis of the substrate specificity and the catalytic mechanism of citramalate synthase from Leptospira interrogans. Ma J; Zhang P; Zhang Z; Zha M; Xu H; Zhao G; Ding J Biochem J; 2008 Oct; 415(1):45-56. PubMed ID: 18498255 [TBL] [Abstract][Full Text] [Related]
17. The role of a conserved histidine residue in a pyruvate-specific Class II aldolase. Wang W; Seah SY FEBS Lett; 2008 Oct; 582(23-24):3385-8. PubMed ID: 18775708 [TBL] [Abstract][Full Text] [Related]
18. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
19. Stereospecificity and catalytic function of histidine residues in 4a-hydroxy-tetrahydropterin dehydratase/DCoH. Rebrin I; Thöny B; Bailey SW; Ayling JE Biochemistry; 1998 Aug; 37(32):11246-54. PubMed ID: 9698371 [TBL] [Abstract][Full Text] [Related]
20. Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II. Vyazmensky M; Steinmetz A; Meyer D; Golbik R; Barak Z; Tittmann K; Chipman DM Biochemistry; 2011 Apr; 50(15):3250-60. PubMed ID: 21370850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]