These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21425849)

  • 1. In situ transmission electron microscopy observation of nanostructural changes in phase-change memory.
    Meister S; Kim S; Cha JJ; Wong HS; Cui Y
    ACS Nano; 2011 Apr; 5(4):2742-8. PubMed ID: 21425849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.
    Xia M; Zhu M; Wang Y; Song Z; Rao F; Wu L; Cheng Y; Song S
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7627-34. PubMed ID: 25805549
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Oh SH; Baek K; Son SK; Song K; Oh JW; Jeon SJ; Kim W; Yoo JH; Lee KJ
    Nanoscale Adv; 2020 Sep; 2(9):3841-3848. PubMed ID: 36132805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.
    Loke D; Shi L; Wang W; Zhao R; Yang H; Ng LT; Lim KG; Chong TC; Yeo YC
    Nanotechnology; 2011 Jun; 22(25):254019. PubMed ID: 21572204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Stickier"-Surface Sb
    Feng J; Lotnyk A; Bryja H; Wang X; Xu M; Lin Q; Cheng X; Xu M; Tong H; Miao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33397-33407. PubMed ID: 32597166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chalcogenide phase-change memory nanotubes for lower writing current operation.
    Jung Y; Agarwal R; Yang CY; Agarwal R
    Nanotechnology; 2011 Jun; 22(25):254012. PubMed ID: 21572211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.
    Huang YT; Huang CW; Chen JY; Ting YH; Lu KC; Chueh YL; Wu WW
    ACS Nano; 2014 Sep; 8(9):9457-62. PubMed ID: 25133955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.
    Grishin I; Huey BD; Kolosov OV
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11441-5. PubMed ID: 24111915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials.
    Hegedüs J; Elliott SR
    Nat Mater; 2008 May; 7(5):399-405. PubMed ID: 18362909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible one diode-one phase change memory array enabled by block copolymer self-assembly.
    Mun BH; You BK; Yang SR; Yoo HG; Kim JM; Park WI; Yin Y; Byun M; Jung YS; Lee KJ
    ACS Nano; 2015 Apr; 9(4):4120-8. PubMed ID: 25826001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GeSe ovonic threshold switch: the impact of functional layer thickness and device size.
    Zhao J; Zhao Z; Song Z; Zhu M
    Sci Rep; 2024 Mar; 14(1):6685. PubMed ID: 38509187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires.
    Nam SW; Chung HS; Lo YC; Qi L; Li J; Lu Y; Johnson AT; Jung Y; Nukala P; Agarwal R
    Science; 2012 Jun; 336(6088):1561-6. PubMed ID: 22723418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning electron microscope for in situ study of crystallization of Ge2Sb2Te5 in phase-change memory.
    Yin Y; Niida D; Ota K; Sone H; Hosaka S
    Rev Sci Instrum; 2007 Dec; 78(12):126101. PubMed ID: 18163750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices.
    Shukla KD; Saxena N; Durai S; Manivannan A
    Sci Rep; 2016 Nov; 6():37868. PubMed ID: 27886266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides.
    Gao P; Wang Z; Fu W; Liao Z; Liu K; Wang W; Bai X; Wang E
    Micron; 2010 Jun; 41(4):301-5. PubMed ID: 20042340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-power switching of phase-change materials with carbon nanotube electrodes.
    Xiong F; Liao AD; Estrada D; Pop E
    Science; 2011 Apr; 332(6029):568-70. PubMed ID: 21393510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of historical exposures by phase contrast and transmission electron microscopy in North Carolina USA asbestos textile plants.
    Dement JM; Myers D; Loomis D; Richardson D; Wolf S
    Occup Environ Med; 2009 Sep; 66(9):574-83. PubMed ID: 18805888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring ultrafast threshold switching in In
    Saxena N; Persch C; Wuttig M; Manivannan A
    Sci Rep; 2019 Dec; 9(1):19251. PubMed ID: 31848416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory.
    Lee SH; Jung Y; Agarwal R
    Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Transmission Electron Microscopy with Biasing and Fabrication of Asymmetric Crossbars Based on Mixed-Phased a-VO x.
    Nirantar S; Mayes E; Sriram S
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.