These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21427466)

  • 1. High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution.
    Park YK; Choi HS; Kim JH; Kim JH; Hahn YB
    Nanotechnology; 2011 May; 22(18):185310. PubMed ID: 21427466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO nanowire transistors.
    Goldberger J; Sirbuly DJ; Law M; Yang P
    J Phys Chem B; 2005 Jan; 109(1):9-14. PubMed ID: 16850973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors.
    Sun B; Sirringhaus H
    J Am Chem Soc; 2006 Dec; 128(50):16231-7. PubMed ID: 17165776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and hydrogen-sensing characteristics of field effect transistors based on nanorods of ZnO and WO2.72.
    Rout CS; Kulkarni GU; Rao CN
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5652-8. PubMed ID: 19928282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors.
    Aïssa B; El Khakani MA
    Nanotechnology; 2009 Apr; 20(17):175203. PubMed ID: 19420587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance field effect transistors from solution processed carbon nanotubes.
    Wang H; Luo J; Robertson A; Ito Y; Yan W; Lang V; Zaka M; Schäffel F; Rümmeli MH; Briggs GA; Warner JH
    ACS Nano; 2010 Nov; 4(11):6659-64. PubMed ID: 20958015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating.
    Yang C; Hong K; Jang J; Chung DS; An TK; Choi WS; Park CE
    Nanotechnology; 2009 Nov; 20(46):465201. PubMed ID: 19847029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.
    Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D
    Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral growth of ZnO nanorod arrays in polyhedral structures for high on-current field-effect transistors.
    Park YK; Rho WY; Mahmoudi T; Hahn YB
    Chem Commun (Camb); 2014 Sep; 50(72):10502-5. PubMed ID: 25068450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.
    Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X
    Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single ZnO nanobelt based field effect transistors (FETs).
    Park YK; Umar A; Lee EW; Hong DM; Hahn YB
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5745-51. PubMed ID: 19908447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors.
    Kim MG; Kim HS; Ha YG; He J; Kanatzidis MG; Facchetti A; Marks TJ
    J Am Chem Soc; 2010 Aug; 132(30):10352-64. PubMed ID: 20662515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the fabrication of crystalline C60 nanorod transistors from solution.
    Larsen C; Barzegar HR; Nitze F; Wågberg T; Edman L
    Nanotechnology; 2012 Aug; 23(34):344015. PubMed ID: 22885636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing.
    Chang YK; Hong FC
    Nanotechnology; 2009 Jun; 20(23):235202. PubMed ID: 19448287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.
    Opoku C; Dahiya AS; Oshman C; Daumont C; Cayrel F; Poulin-Vittrant G; Alquier D; Camara N
    Nanotechnology; 2015 Sep; 26(35):355704. PubMed ID: 26245930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single ZnO nanowire based high-performance field effect transistors (FETs).
    Park YK; Umar A; Kim JS; Yang HY; Lee JS; Hahn YB
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5839-44. PubMed ID: 19908462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode.
    Sarker BK; Liu J; Zhai L; Khondaker SI
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.