BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21428395)

  • 1. Converting visible light into UVC: microbial inactivation by Pr(3+)-activated upconversion materials.
    Cates EL; Cho M; Kim JH
    Environ Sci Technol; 2011 Apr; 45(8):3680-6. PubMed ID: 21428395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics.
    Cates SL; Cates EL; Cho M; Kim JH
    Environ Sci Technol; 2014 Feb; 48(4):2290-7. PubMed ID: 24533600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes.
    Bak J; Ladefoged SD; Tvede M; Begovic T; Gregersen A
    Biofouling; 2010 Jan; 26(1):31-8. PubMed ID: 20390554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofouling control in water by various UVC wavelengths and doses.
    Lakretz A; Ron EZ; Mamane H
    Biofouling; 2010; 26(3):257-67. PubMed ID: 20024789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UVC fluencies for preventative treatment of Pseudomonas aeruginosa contaminated polymer tubes.
    Bak J; Ladefoged SD; Begovic T; Winding A
    Biofouling; 2010 Oct; 26(7):821-8. PubMed ID: 20859812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B.
    Argyraki A; Markvart M; Bjørndal L; Bjarnsholt T; Petersen PM
    J Biomed Opt; 2017 Jun; 22(6):65004. PubMed ID: 28655056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.
    Liou JW; Chang HH
    Arch Immunol Ther Exp (Warsz); 2012 Aug; 60(4):267-75. PubMed ID: 22678625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe
    Yousefzadeh S; Matin AR; Ahmadi E; Sabeti Z; Alimohammadi M; Aslani H; Nabizadeh R
    Food Chem Toxicol; 2018 Apr; 114():334-345. PubMed ID: 29481893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles.
    Park H; Park HJ; Kim JA; Lee SH; Kim JH; Yoon J; Park TH
    J Microbiol Methods; 2011 Jan; 84(1):41-5. PubMed ID: 20971135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water.
    Chen RZ; Craik SA; Bolton JR
    Water Res; 2009 Dec; 43(20):5087-96. PubMed ID: 19762061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation.
    Cates EL; Kim JH
    J Photochem Photobiol B; 2015 Dec; 153():405-11. PubMed ID: 26555644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A UVC device for intra-luminal disinfection of catheters: in vitro tests on soft polymer tubes contaminated with Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans.
    Bak J; Begovic T; Bjarnsholt T; Nielsen A
    Photochem Photobiol; 2011; 87(5):1123-8. PubMed ID: 21699548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm.
    Wang D; Oppenländer T; El-Din MG; Bolton JR
    Photochem Photobiol; 2010; 86(1):176-81. PubMed ID: 19912558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prototype catheter designed for ultraviolet C disinfection.
    Bak J; Begovic T
    J Hosp Infect; 2013 Jun; 84(2):173-7. PubMed ID: 23669262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.
    Makky EA; Park GS; Choi IW; Cho SI; Kim H
    Chemosphere; 2011 May; 83(9):1228-33. PubMed ID: 21489600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesting photons to kill microbes: ES&T's top environmental technology article 2011.
    Webb S
    Environ Sci Technol; 2012 Apr; 46(7):3609-10. PubMed ID: 22468906
    [No Abstract]   [Full Text] [Related]  

  • 17. Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials.
    Prasad GK; Agarwal GS; Singh B; Rai GP; Vijayaraghavan R
    J Hazard Mater; 2009 Jun; 165(1-3):506-10. PubMed ID: 19056174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of biofilm-bound Pseudomonas aeruginosa bacteria using UVC light emitting diodes (UVC LEDs).
    Gora SL; Rauch KD; Ontiveros CC; Stoddart AK; Gagnon GA
    Water Res; 2019 Mar; 151():193-202. PubMed ID: 30594087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm and siderophore effects on secondary waste water disinfection.
    Saidi N; Kouki S; Mehri I; Ben Rejeb A; Belila A; Hassen A; Ouzari H
    Curr Microbiol; 2011 Oct; 63(4):337-40. PubMed ID: 21779938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.