These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21428395)

  • 1. Converting visible light into UVC: microbial inactivation by Pr(3+)-activated upconversion materials.
    Cates EL; Cho M; Kim JH
    Environ Sci Technol; 2011 Apr; 45(8):3680-6. PubMed ID: 21428395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics.
    Cates SL; Cates EL; Cho M; Kim JH
    Environ Sci Technol; 2014 Feb; 48(4):2290-7. PubMed ID: 24533600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes.
    Bak J; Ladefoged SD; Tvede M; Begovic T; Gregersen A
    Biofouling; 2010 Jan; 26(1):31-8. PubMed ID: 20390554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofouling control in water by various UVC wavelengths and doses.
    Lakretz A; Ron EZ; Mamane H
    Biofouling; 2010; 26(3):257-67. PubMed ID: 20024789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UVC fluencies for preventative treatment of Pseudomonas aeruginosa contaminated polymer tubes.
    Bak J; Ladefoged SD; Begovic T; Winding A
    Biofouling; 2010 Oct; 26(7):821-8. PubMed ID: 20859812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B.
    Argyraki A; Markvart M; Bjørndal L; Bjarnsholt T; Petersen PM
    J Biomed Opt; 2017 Jun; 22(6):65004. PubMed ID: 28655056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.
    Liou JW; Chang HH
    Arch Immunol Ther Exp (Warsz); 2012 Aug; 60(4):267-75. PubMed ID: 22678625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe
    Yousefzadeh S; Matin AR; Ahmadi E; Sabeti Z; Alimohammadi M; Aslani H; Nabizadeh R
    Food Chem Toxicol; 2018 Apr; 114():334-345. PubMed ID: 29481893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles.
    Park H; Park HJ; Kim JA; Lee SH; Kim JH; Yoon J; Park TH
    J Microbiol Methods; 2011 Jan; 84(1):41-5. PubMed ID: 20971135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water.
    Chen RZ; Craik SA; Bolton JR
    Water Res; 2009 Dec; 43(20):5087-96. PubMed ID: 19762061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation.
    Cates EL; Kim JH
    J Photochem Photobiol B; 2015 Dec; 153():405-11. PubMed ID: 26555644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A UVC device for intra-luminal disinfection of catheters: in vitro tests on soft polymer tubes contaminated with Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans.
    Bak J; Begovic T; Bjarnsholt T; Nielsen A
    Photochem Photobiol; 2011; 87(5):1123-8. PubMed ID: 21699548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm.
    Wang D; Oppenländer T; El-Din MG; Bolton JR
    Photochem Photobiol; 2010; 86(1):176-81. PubMed ID: 19912558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prototype catheter designed for ultraviolet C disinfection.
    Bak J; Begovic T
    J Hosp Infect; 2013 Jun; 84(2):173-7. PubMed ID: 23669262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.
    Makky EA; Park GS; Choi IW; Cho SI; Kim H
    Chemosphere; 2011 May; 83(9):1228-33. PubMed ID: 21489600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesting photons to kill microbes: ES&T's top environmental technology article 2011.
    Webb S
    Environ Sci Technol; 2012 Apr; 46(7):3609-10. PubMed ID: 22468906
    [No Abstract]   [Full Text] [Related]  

  • 17. Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials.
    Prasad GK; Agarwal GS; Singh B; Rai GP; Vijayaraghavan R
    J Hazard Mater; 2009 Jun; 165(1-3):506-10. PubMed ID: 19056174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of biofilm-bound Pseudomonas aeruginosa bacteria using UVC light emitting diodes (UVC LEDs).
    Gora SL; Rauch KD; Ontiveros CC; Stoddart AK; Gagnon GA
    Water Res; 2019 Mar; 151():193-202. PubMed ID: 30594087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm and siderophore effects on secondary waste water disinfection.
    Saidi N; Kouki S; Mehri I; Ben Rejeb A; Belila A; Hassen A; Ouzari H
    Curr Microbiol; 2011 Oct; 63(4):337-40. PubMed ID: 21779938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.