These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 21428469)

  • 21. The mechanisms of subharmonic tone generation in a synthetic larynx model.
    Kniesburges S; Lodermeyer A; Becker S; Traxdorf M; Döllinger M
    J Acoust Soc Am; 2016 Jun; 139(6):3182. PubMed ID: 27369142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer model to characterize the air volume displaced by the vibrating vocal cords.
    Flanagan JL; Ishizaka K
    J Acoust Soc Am; 1978 May; 63(5):1559-65. PubMed ID: 690335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatomical and functional correlates of voice quality in tracheoesophageal speech.
    van As-Brooks CJ; Hilgers FJ; Koopmans-van Beinum FJ; Pols LC
    J Voice; 2005 Sep; 19(3):360-72. PubMed ID: 15936923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new model of the vocal cords based on a collapsible tube analogy.
    Conrad WA
    Med Res Eng; 1980; 13(2):7-10. PubMed ID: 7401986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical modeling of register transitions and the role of vocal tract resonators.
    Tokuda IT; Zemke M; Kob M; Herzel H
    J Acoust Soc Am; 2010 Mar; 127(3):1528-36. PubMed ID: 20329853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-precision measurement of the vocal fold length and vibratory amplitudes.
    Schuberth S; Hoppe U; Döllinger M; Lohscheller J; Eysholdt U
    Laryngoscope; 2002 Jun; 112(6):1043-9. PubMed ID: 12160271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental flow study of modeled regular and irregular glottal closure types.
    Kirmse C; Triep M; Brücker C; Döllinger M; Stingl M
    Logoped Phoniatr Vocol; 2010 Apr; 35(1):45-50. PubMed ID: 20350076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
    Tsai CG; Shau YW; Liu HM; Hsiao TY
    J Voice; 2008 May; 22(3):275-82. PubMed ID: 17509826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration.
    Sung MW; Kim KH; Koh TY; Kwon TY; Mo JH; Choi SH; Lee JS; Park KS; Kim EJ; Sung MY
    Laryngoscope; 1999 Nov; 109(11):1859-63. PubMed ID: 10569423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voice source characteristics in Mongolian "throat singing" studied with high-speed imaging technique, acoustic spectra, and inverse filtering.
    Lindestad PA; Södersten M; Merker B; Granqvist S
    J Voice; 2001 Mar; 15(1):78-85. PubMed ID: 12269637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.