These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 21428469)
41. Three-dimensional nature of the glottal jet. Triep M; Brücker C J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854 [TBL] [Abstract][Full Text] [Related]
42. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI. Schickhofer L; Malinen J; Mihaescu M J Acoust Soc Am; 2019 Apr; 145(4):2049. PubMed ID: 31046346 [TBL] [Abstract][Full Text] [Related]
43. Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction. Mattheus W; Brücker C Biomed Eng Lett; 2018 Aug; 8(3):309-320. PubMed ID: 30603215 [TBL] [Abstract][Full Text] [Related]
44. Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model. Ringenberg H; Rogers D; Wei N; Krane M; Wei T J Fluid Mech; 2021 Jul; 918():. PubMed ID: 34737460 [TBL] [Abstract][Full Text] [Related]
45. Effect of collisionality on kinetic stability of the resistive wall mode. Berkery JW; Sabbagh SA; Betti R; Bell RE; Gerhardt SP; LeBlanc BP; Yuh H Phys Rev Lett; 2011 Feb; 106(7):075004. PubMed ID: 21405523 [TBL] [Abstract][Full Text] [Related]
46. An Investigation of Acoustic Back-Coupling in Human Phonation on a Synthetic Larynx Model. Näger C; Kniesburges S; Tur B; Schoder S; Becker S Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135934 [TBL] [Abstract][Full Text] [Related]
47. Variability in expiratory trajectory angles during consonant production by one human subject and from a physical mouth model: Application to respiratory droplet emission. Ahmed T; Wendling HE; Mofakham AA; Ahmadi G; Helenbrook BT; Ferro AR; Brown DM; Erath BD Indoor Air; 2021 Nov; 31(6):1896-1912. PubMed ID: 34297885 [TBL] [Abstract][Full Text] [Related]
48. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds. Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907 [TBL] [Abstract][Full Text] [Related]
49. Experimental investigation of the influence of a posterior gap on glottal flow and sound. Park JB; Mongeau L J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605 [TBL] [Abstract][Full Text] [Related]
50. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle. DeJonckere PH; Lebacq J; Titze IR J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329 [TBL] [Abstract][Full Text] [Related]
51. What can vortices tell us about vocal fold vibration and voice production. Khosla S; Murugappan S; Gutmark E Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068 [TBL] [Abstract][Full Text] [Related]
52. Impact of wall rotation on supraglottal jet stability in voiced speech. Erath BD; Plesniak MW J Acoust Soc Am; 2011 Mar; 129(3):EL64-70. PubMed ID: 21428469 [TBL] [Abstract][Full Text] [Related]