These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21428498)

  • 21. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV).
    Urban MW; Pislaru C; Nenadic IZ; Kinnick RR; Greenleaf JF
    IEEE Trans Med Imaging; 2013 Feb; 32(2):247-61. PubMed ID: 23060325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of complex arterial elastic modulus from ring resonance excited by ultrasound radiation force.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e169-72. PubMed ID: 16860364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental Investigation of Guided Wave Imaging in Thin Soft Media under Various Coupling Conditions.
    Lee WN; Chang EJ; Guo Y; Wang Y
    Ultrasound Med Biol; 2018 Dec; 44(12):2821-2837. PubMed ID: 30241727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves.
    Li GY; He Q; Xu G; Jia L; Luo J; Cao Y
    J Biomech; 2017 Jan; 51():97-104. PubMed ID: 27989313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study.
    Maksuti E; Bini F; Fiorentini S; Blasi G; Urban MW; Marinozzi F; Larsson M
    Phys Med Biol; 2017 Apr; 62(7):2694-2718. PubMed ID: 28081009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
    Wang TY; Hall TL; Xu Z; Fowlkes JB; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1167-81. PubMed ID: 22711412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear Wave Elastography Imaging for the Features of Symptomatic Carotid Plaques: A Feasibility Study.
    Lou Z; Yang J; Tang L; Jin Y; Zhang J; Liu C; Li Q
    J Ultrasound Med; 2017 Jun; 36(6):1213-1223. PubMed ID: 28218798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear modulus imaging with spatially-modulated ultrasound radiation force.
    McAleavey S; Menon M; Elegbe E
    Ultrason Imaging; 2009 Oct; 31(4):217-34. PubMed ID: 20458875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force.
    Dutta P; Urban MW; Le MaƮtre OP; Greenleaf JF; Aquino W
    Phys Med Biol; 2015 Jul; 60(13):5279-96. PubMed ID: 26109582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
    van Sloun RJG; Wildeboer RR; Wijkstra H; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1666-1673. PubMed ID: 28841556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technical Note: In vivo Young's modulus mapping of pancreatic ductal adenocarcinoma during HIFU ablation using harmonic motion elastography (HME).
    Nabavizadeh A; Payen T; Saharkhiz N; McGarry M; Olive KP; Konofagou EE
    Med Phys; 2018 Nov; 45(11):5244-5250. PubMed ID: 30178474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing Carotid and Brachial Artery Stiffness: A First Step Toward Mechanical Mapping of the Arterial Tree.
    Maurice RL; Vaujois L; Dahdah N; Nuyt AM; Bigras JL
    Ultrasound Med Biol; 2015 Jul; 41(7):1808-13. PubMed ID: 25840477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Resolution Shear Wave Imaging of the Human Cornea Using a Dual-Element Transducer.
    Chen PY; Shih CC; Lin WC; Ma T; Zhou Q; Shung KK; Huang CC
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.