These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21428515)

  • 1. Failure of the precedence effect with a noise-band vocoder.
    Seeber BU; Hafter ER
    J Acoust Soc Am; 2011 Mar; 129(3):1509-21. PubMed ID: 21428515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role and relative contribution of temporal envelope and fine structure cues in sentence recognition by normal-hearing listeners.
    Apoux F; Yoho SE; Youngdahl CL; Healy EW
    J Acoust Soc Am; 2013 Sep; 134(3):2205-12. PubMed ID: 23967950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of noise vocoding on speech quality perception.
    Anderson MC; Arehart KH; Kates JM
    Hear Res; 2014 Mar; 309():75-83. PubMed ID: 24333929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indications for temporal fine structure contribution to co-modulation masking release.
    Pierzycki RH; Seeber BU
    J Acoust Soc Am; 2010 Dec; 128(6):3614-24. PubMed ID: 21218893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Binaural Temporal Fine Structure and Envelope Cues in Cocktail-Party Listening.
    Swaminathan J; Mason CR; Streeter TM; Best V; Roverud E; Kidd G
    J Neurosci; 2016 Aug; 36(31):8250-7. PubMed ID: 27488643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefit of temporal fine structure to speech perception in noise measured with controlled temporal envelopes.
    Eaves JM; Summerfield AQ; Kitterick PT
    J Acoust Soc Am; 2011 Jul; 130(1):501-7. PubMed ID: 21786915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the addition of low-level, low-noise noise on the intelligibility of sentences processed to remove temporal envelope information.
    Hopkins K; Moore BC; Stone MA
    J Acoust Soc Am; 2010 Oct; 128(4):2150-61. PubMed ID: 20968385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multiple contributions of interaural differences to improved speech intelligibility in multitalker scenarios.
    Schoenmaker E; Brand T; van de Par S
    J Acoust Soc Am; 2016 May; 139(5):2589. PubMed ID: 27250153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in precedence effect between children and adults signifies development of sound localization abilities in complex listening tasks.
    Litovsky RY; Godar SP
    J Acoust Soc Am; 2010 Oct; 128(4):1979-91. PubMed ID: 20968369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic range of useful temporal fine structure cues for speech in the presence of a competing talker.
    Stone MA; Moore BC; Füllgrabe C
    J Acoust Soc Am; 2011 Oct; 130(4):2162-72. PubMed ID: 21973370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold of the precedence effect in noise.
    Freyman RL; Griffin AM; Zurek PM
    J Acoust Soc Am; 2014 May; 135(5):2923-30. PubMed ID: 24815272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative contribution of off- and on-frequency spectral components of background noise to the masking of unprocessed and vocoded speech.
    Apoux F; Healy EW
    J Acoust Soc Am; 2010 Oct; 128(4):2075-84. PubMed ID: 20968378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of speech localization in a multi-talker mixture using periodicity and energy-based auditory features.
    Josupeit A; Kopčo N; Hohmann V
    J Acoust Soc Am; 2016 May; 139(5):2911. PubMed ID: 27250183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.
    Lüddemann H; Kollmeier B; Riedel H
    Hear Res; 2016 Feb; 332():170-187. PubMed ID: 26526276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial hearing ability of the pigmented Guinea pig (Cavia porcellus): Minimum audible angle and spatial release from masking in azimuth.
    Greene NT; Anbuhl KL; Ferber AT; DeGuzman M; Allen PD; Tollin DJ
    Hear Res; 2018 Aug; 365():62-76. PubMed ID: 29778290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.
    Li X; Nie K; Imennov NS; Won JH; Drennan WR; Rubinstein JT; Atlas LE
    J Acoust Soc Am; 2012 Nov; 132(5):3387-98. PubMed ID: 23145619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity to a break in interaural correlation is co-modulated by intensity level and interaural delay.
    Kong L; Xie Z; Lu L; Wu X; Li L
    J Acoust Soc Am; 2012 Aug; 132(2):EL114-8. PubMed ID: 22894308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.