These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21428518)

  • 21. Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
    Mihaescu M; Khosla SM; Murugappan S; Gutmark EJ
    J Acoust Soc Am; 2010 Jan; 127(1):435-44. PubMed ID: 20058989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model.
    Xuan Y; Zhang Z
    J Speech Lang Hear Res; 2014 Apr; 57(2):416-25. PubMed ID: 24167236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of flow separation location on phonation onset.
    Zhang Z
    J Acoust Soc Am; 2008 Sep; 124(3):1689-94. PubMed ID: 19045659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonation threshold pressure and the elastic shear modulus: comparison of two-mass model calculations with experiments.
    Fulcher LP; Scherer RC; Waddle JM
    J Acoust Soc Am; 2012 Oct; 132(4):2582-91. PubMed ID: 23039451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vocal fold bulging effects on phonation using a biophysical computer model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of exit radii on intraglottal pressure distributions in the convergent glottis.
    Scherer RC; De Witt KJ; Kucinschi BR
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2267-9. PubMed ID: 11757915
    [No Abstract]   [Full Text] [Related]  

  • 34. Optimal glottal configuration for ease of phonation.
    Lucero JC
    J Voice; 1998 Jun; 12(2):151-8. PubMed ID: 9649070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
    Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P
    Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model.
    Klepacek I; Jirak D; Duskova Smrckova M; Janouskova O; Vampola T
    J Voice; 2016 Sep; 30(5):529-37. PubMed ID: 26432357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency.
    Deguchi S; Kawashima K; Washio S
    Ann Otol Rhinol Laryngol; 2008 Dec; 117(12):876-80. PubMed ID: 19140531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.