These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 21428519)

  • 1. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T; Tanabe Y
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional nature of the glottal jet.
    Triep M; Brücker C
    J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech.
    Erath BD; Zañartu M; Peterson SD; Plesniak MW
    Chaos; 2011 Sep; 21(3):033113. PubMed ID: 21974648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.