These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21428630)

  • 1. Heterogeneous condensation of the Lennard-Jones vapor onto a nanoscale seed particle.
    Inci L; Bowles RK
    J Chem Phys; 2011 Mar; 134(11):114505. PubMed ID: 21428630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical seed mediated vapor condensation of Lennard-Jones fluid: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2013 Aug; 139(5):054702. PubMed ID: 23927276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M
    J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure.
    Yasuoka K; Zeng XC
    J Chem Phys; 2007 Mar; 126(12):124320. PubMed ID: 17411136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approach to the kinetics of heterogeneous unary nucleation on liquid aerosols of a binary solution.
    Djikaev Y; Ruckenstein E
    J Chem Phys; 2006 Dec; 125(24):244707. PubMed ID: 17199368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from nucleation to spinodal decomposition in a condensing vapor.
    Wedekind J; Chkonia G; Wölk J; Strey R; Reguera D
    J Chem Phys; 2009 Sep; 131(11):114506. PubMed ID: 19778128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation.
    Römer F; Kraska T
    J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle growth analysis by molecular dynamics: spherical seed.
    Suh D; Yasuoka K
    J Phys Chem B; 2011 Sep; 115(36):10631-45. PubMed ID: 21805968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of the nucleation of water: determining the sticking probability and formation energy of a cluster.
    Tanaka KK; Kawano A; Tanaka H
    J Chem Phys; 2014 Mar; 140(11):114302. PubMed ID: 24655175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.