BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21428680)

  • 1. Identifying a minimal rheological configuration: a tool for effective and efficient constitutive modeling of soft tissues.
    Jordan P; Kerdok AE; Howe RD; Socrate S
    J Biomech Eng; 2011 Apr; 133(4):041006. PubMed ID: 21428680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variational constitutive model for soft biological tissues.
    El Sayed T; Mota A; Fraternali F; Ortiz M
    J Biomech; 2008; 41(7):1458-66. PubMed ID: 18423649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK
    J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model.
    Bilston LE; Liu Z; Phan-Thien N
    Biorheology; 2001; 38(4):335-45. PubMed ID: 11673648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lubricated squeezing flow: a useful method for measuring the viscoelastic properties of soft tissues.
    Nasseri S; Bilston L; Tanner R
    Biorheology; 2003; 40(5):545-51. PubMed ID: 12897420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of soft tissues.
    Miller K
    Med Sci Monit; 2000; 6(1):158-67. PubMed ID: 11208305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis.
    Natali AN; Carniel EL; Gregersen H
    Med Eng Phys; 2009 Nov; 31(9):1056-62. PubMed ID: 19651531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues.
    Olberding JE; Francis Suh JK
    J Biomech; 2006; 39(13):2468-75. PubMed ID: 16153650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-linear computer simulation of brain deformation.
    Miller K
    Biomed Sci Instrum; 2001; 37():179-84. PubMed ID: 11347384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
    Demirci N; Tönük E
    Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.