These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 21428690)
1. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization. Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690 [TBL] [Abstract][Full Text] [Related]
2. Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes. Alang Ahmad S; Hucknall A; Chilkoti A; Leggett GJ Langmuir; 2010 Jun; 26(12):9937-42. PubMed ID: 20356046 [TBL] [Abstract][Full Text] [Related]
3. Direct patterning of intrinsically electron beam sensitive polymer brushes. Rastogi A; Paik MY; Tanaka M; Ober CK ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228 [TBL] [Abstract][Full Text] [Related]
5. Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications. Xu FJ; Liu LY; Yang WT; Kang ET; Neoh KG Biomacromolecules; 2009 Jun; 10(6):1665-74. PubMed ID: 19402738 [TBL] [Abstract][Full Text] [Related]
6. Protein-resistant polyurethane via surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2009 Dec; 91(4):1189-201. PubMed ID: 19148931 [TBL] [Abstract][Full Text] [Related]
7. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Tugulu S; Klok HA Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637 [TBL] [Abstract][Full Text] [Related]
8. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related]
9. Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Ma H; Li D; Sheng X; Zhao B; Chilkoti A Langmuir; 2006 Apr; 22(8):3751-6. PubMed ID: 16584252 [TBL] [Abstract][Full Text] [Related]
10. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2010 Dec; 95(4):1223-32. PubMed ID: 20939048 [TBL] [Abstract][Full Text] [Related]
11. Patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces behave as "tentacles" to capture ferritin from aqueous solution. Chen JK; Chen ZY; Lin HC; Hong PD; Chang FC ACS Appl Mater Interfaces; 2009 Jul; 1(7):1525-32. PubMed ID: 20355956 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes. Tria MC; Grande CD; Ponnapati RR; Advincula RC Biomacromolecules; 2010 Dec; 11(12):3422-31. PubMed ID: 21028799 [TBL] [Abstract][Full Text] [Related]
13. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes. Xu D; Yu WH; Kang ET; Neoh KG J Colloid Interface Sci; 2004 Nov; 279(1):78-87. PubMed ID: 15380414 [TBL] [Abstract][Full Text] [Related]
14. NHS-ester functionalized poly(PEGMA) brushes on silicon surface for covalent protein immobilization. Yao Y; Ma YZ; Qin M; Ma XJ; Wang C; Feng XZ Colloids Surf B Biointerfaces; 2008 Oct; 66(2):233-9. PubMed ID: 18675539 [TBL] [Abstract][Full Text] [Related]
15. Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL). Liu X; Li Y; Zheng Z Nanoscale; 2010 Dec; 2(12):2614-8. PubMed ID: 20957278 [TBL] [Abstract][Full Text] [Related]
16. Development of a directly patterned low-surface-energy polymer brush in supercritical carbon dioxide. Rastogi A; Paik MY; Ober CK ACS Appl Mater Interfaces; 2009 Sep; 1(9):2013-20. PubMed ID: 20355827 [TBL] [Abstract][Full Text] [Related]
17. Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization. Xu FJ; Zhao JP; Kang ET; Neoh KG; Li J Langmuir; 2007 Jul; 23(16):8585-92. PubMed ID: 17622163 [TBL] [Abstract][Full Text] [Related]
18. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
19. Surface initiated polymerization on pulsed plasma deposited polyallylamine: a polymer substrate-independent strategy to soft surfaces with polymer brushes. Yameen B; Khan HU; Knoll W; Förch R; Jonas U Macromol Rapid Commun; 2011 Nov; 32(21):1735-40. PubMed ID: 21858892 [TBL] [Abstract][Full Text] [Related]
20. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z; Chen S; Chang Y; Jiang S J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]