These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2142937)

  • 1. Energy coupling in bacterial periplasmic permeases.
    Ames GF; Joshi AK
    J Bacteriol; 1990 Aug; 172(8):4133-7. PubMed ID: 2142937
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.
    Ames GF; Mimura CS; Shyamala V
    FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial periplasmic transport systems: structure, mechanism, and evolution.
    Ames GF
    Annu Rev Biochem; 1986; 55():397-425. PubMed ID: 3527048
    [No Abstract]   [Full Text] [Related]  

  • 4. ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system.
    Hobson AC; Weatherwax R; Ames GF
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7333-7. PubMed ID: 6239289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural biology: Clamour for a kiss.
    Economou A
    Nature; 2008 Oct; 455(7215):879-80. PubMed ID: 18923500
    [No Abstract]   [Full Text] [Related]  

  • 6. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli.
    Berger EA; Heppel LA
    J Biol Chem; 1974 Dec; 249(24):7747-55. PubMed ID: 4279250
    [No Abstract]   [Full Text] [Related]  

  • 7. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface.
    Baichwal V; Liu D; Ames GF
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):620-4. PubMed ID: 7678461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetics of bacterial active transport.
    Simoni RD; Postma PW
    Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462
    [No Abstract]   [Full Text] [Related]  

  • 9. Cellular transport mechanisms.
    Wilson DB
    Annu Rev Biochem; 1978; 47():933-65. PubMed ID: 150255
    [No Abstract]   [Full Text] [Related]  

  • 10. Evolution of permease diversity and energy-coupling mechanisms: an introduction.
    Saier MH
    Res Microbiol; 1990; 141(3):281-6. PubMed ID: 2281190
    [No Abstract]   [Full Text] [Related]  

  • 11. [Molecular architecture of protein translocase].
    Mori H
    Tanpakushitsu Kakusan Koso; 2004 May; 49(7 Suppl):950-8. PubMed ID: 15168501
    [No Abstract]   [Full Text] [Related]  

  • 12. Thermodynamic evaluation of flip-flop mechanism for transport- and ATP-synthesis function of (Na,K)-ATPase.
    Schön R; Dittrich F; Repke KR
    Acta Biol Med Ger; 1974; 33(1):K9-16. PubMed ID: 4278821
    [No Abstract]   [Full Text] [Related]  

  • 13. A little help from my friends: quality control of presecretory proteins in bacteria.
    Fisher AC; DeLisa MP
    J Bacteriol; 2004 Nov; 186(22):7467-73. PubMed ID: 15516557
    [No Abstract]   [Full Text] [Related]  

  • 14. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 15. Maximal efficiency of coupling between ATP hydrolysis and translocation of polypeptides mediated by SecB requires two protomers of SecA.
    Mao C; Hardy SJ; Randall LL
    J Bacteriol; 2009 Feb; 191(3):978-84. PubMed ID: 18978043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The proton-transporting ATPase complex].
    Bogucka K
    Postepy Biochem; 1986; 32(3):301-28. PubMed ID: 3033621
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport.
    Bishop L; Agbayani R; Ambudkar SV; Maloney PC; Ames GF
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6953-7. PubMed ID: 2674940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bioenergetics and membrane proton-electron systems].
    Liberman EA
    Biofizika; 1977; 22(6):1115-28. PubMed ID: 145247
    [No Abstract]   [Full Text] [Related]  

  • 19. Direct and utilization of metabolic energy for transport processes within proximal convolution.
    Ullrich KJ
    Curr Probl Clin Biochem; 1975; 4():13-20. PubMed ID: 127689
    [No Abstract]   [Full Text] [Related]  

  • 20. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus.
    Speelmans G; Poolman B; Abee T; Konings WN
    J Bacteriol; 1994 Aug; 176(16):5160-2. PubMed ID: 8051034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.