BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 21429559)

  • 1. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.
    Greene S; Taylor D; McElarney YR; Foy RH; Jordan P
    Sci Total Environ; 2011 May; 409(11):2211-21. PubMed ID: 21429559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study.
    Haygarth PM; Wood FL; Heathwaite AL; Butler PJ
    Sci Total Environ; 2005 May; 344(1-3):83-106. PubMed ID: 15907512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.
    Salvia-Castellví M; Iffly JF; Borght PV; Hoffmann L
    Sci Total Environ; 2005 May; 344(1-3):51-65. PubMed ID: 15907510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.
    Doody DG; Archbold M; Foy RH; Flynn R
    J Environ Manage; 2012 Jan; 93(1):225-34. PubMed ID: 22054589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.
    Neal C; Jarvie HP; Withers PJ; Whitton BA; Neal M
    Sci Total Environ; 2010 Mar; 408(7):1485-500. PubMed ID: 20097406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland.
    Nasr A; Bruen M; Jordan P; Moles R; Kiely G; Byrne P
    Water Res; 2007 Mar; 41(5):1065-73. PubMed ID: 17258266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent.
    Bowes MJ; Neal C; Jarvie HP; Smith JT; Davies HN
    Sci Total Environ; 2010 Sep; 408(19):4239-50. PubMed ID: 20547413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.
    McDowell RW; Wilcock RJ
    J Environ Qual; 2007; 36(2):540-8. PubMed ID: 17332258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balancing between retention and flushing in river networks--optimizing nutrient management to improve trophic state.
    Honti M; Istvánovics V; Kovács AS
    Sci Total Environ; 2010 Sep; 408(20):4712-21. PubMed ID: 20638104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.
    Ockenden MC; Quinton JN; Favaretto N; Deasy C; Surridge B
    Environ Sci Process Impacts; 2014 Jul; 16(7):1637-45. PubMed ID: 24686791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate.
    Couture RM; Tominaga K; Starrfelt J; Moe SJ; Kaste Ø; Wright RF
    Environ Sci Process Impacts; 2014 Jul; 16(7):1588-99. PubMed ID: 24622900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of phosphorus inputs to rivers from diffuse and point sources.
    Bowes MJ; Smith JT; Jarvie HP; Neal C
    Sci Total Environ; 2008 Jun; 395(2-3):125-38. PubMed ID: 18367235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A; Stålnacke P
    Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2020s scenario analysis of nutrient load in the Mekong River Basin using a distributed hydrological model.
    Yoshimura C; Zhou M; Kiem AS; Fukami K; Prasantha HH; Ishidaira H; Takeuchi K
    Sci Total Environ; 2009 Oct; 407(20):5356-66. PubMed ID: 19625073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea.
    Zessner M; Postolache C; Clement A; Kovacs A; Strauss P
    Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: evaluating alternative strategies to meet WFD standards.
    Whitehead PG; Jin L; Crossman J; Comber S; Johnes PJ; Daldorph P; Flynn N; Collins AL; Butterfield D; Mistry R; Bardon R; Pope L; Willows R
    Sci Total Environ; 2014 May; 481():157-66. PubMed ID: 24594744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.