BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21429757)

  • 1. Association of hemicellulose- and pectin-modifying gene expression with Eucalyptus globulus secondary growth.
    Goulao LF; Vieira-Silva S; Jackson PA
    Plant Physiol Biochem; 2011 Aug; 49(8):873-81. PubMed ID: 21429757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.
    Mizrachi E; Maloney VJ; Silberbauer J; Hefer CA; Berger DK; Mansfield SD; Myburg AA
    New Phytol; 2015 Jun; 206(4):1351-63. PubMed ID: 25388807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.
    Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J
    Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.
    Hefer CA; Mizrachi E; Myburg AA; Douglas CJ; Mansfield SD
    New Phytol; 2015 Jun; 206(4):1391-405. PubMed ID: 25659405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes.
    Hao Z; Mohnen D
    Crit Rev Biochem Mol Biol; 2014; 49(3):212-41. PubMed ID: 24564339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcript profiling of Eucalyptus xylem genes during tension wood formation.
    Paux E; Carocha V; Marques C; Mendes de Sousa A; Borralho N; Sivadon P; Grima-Pettenati J
    New Phytol; 2005 Jul; 167(1):89-100. PubMed ID: 15948833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers.
    Qiu D; Wilson IW; Gan S; Washusen R; Moran GF; Southerton SG
    New Phytol; 2008; 179(1):94-103. PubMed ID: 18422902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem.
    Hussey SG; Loots MT; van der Merwe K; Mizrachi E; Myburg AA
    Sci Rep; 2017 Jun; 7(1):3370. PubMed ID: 28611454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics and Proteomics Reveal the Cellulose and Pectin Metabolic Processes in the Tension Wood (Non-G-Layer) of
    Xiao Y; Yi F; Ling J; Wang Z; Zhao K; Lu N; Qu G; Kong L; Ma W; Wang J
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121503
    [No Abstract]   [Full Text] [Related]  

  • 12. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.
    Yu H; Soler M; San Clemente H; Mila I; Paiva JA; Myburg AA; Bouzayen M; Grima-Pettenati J; Cassan-Wang H
    Plant Cell Physiol; 2015 Apr; 56(4):700-14. PubMed ID: 25577568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells.
    Takata N; Awano T; Nakata MT; Sano Y; Sakamoto S; Mitsuda N; Taniguchi T
    Tree Physiol; 2019 Apr; 39(4):514-525. PubMed ID: 30806711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties.
    Sousa AO; Camillo LR; Assis ETCM; Lima NS; Silva GO; Kirch RP; Silva DC; Ferraz A; Pasquali G; Costa MGC
    Planta; 2020 Sep; 252(3):45. PubMed ID: 32880001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis.
    Brown K; Takawira LT; O'Neill MM; Mizrachi E; Myburg AA; Hussey SG
    New Phytol; 2019 Sep; 223(4):1937-1951. PubMed ID: 31063599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree.
    Ranik M; Creux NM; Myburg AA
    Tree Physiol; 2006 Mar; 26(3):365-75. PubMed ID: 16356907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.
    Shi R; Wang JP; Lin YC; Li Q; Sun YH; Chen H; Sederoff RR; Chiang VL
    Planta; 2017 May; 245(5):927-938. PubMed ID: 28083709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species.
    Salazar MM; Nascimento LC; Camargo EL; Gonçalves DC; Lepikson Neto J; Marques WL; Teixeira PJ; Mieczkowski P; Mondego JM; Carazzolle MF; Deckmann AC; Pereira GA
    BMC Genomics; 2013 Mar; 14():201. PubMed ID: 23521840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues.
    Wierzbicki MP; Christie N; Pinard D; Mansfield SD; Mizrachi E; Myburg AA
    New Phytol; 2019 Sep; 223(4):1952-1972. PubMed ID: 31144333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation.
    Soler M; Plasencia A; Larbat R; Pouzet C; Jauneau A; Rivas S; Pesquet E; Lapierre C; Truchet I; Grima-Pettenati J
    New Phytol; 2017 Jan; 213(1):287-299. PubMed ID: 27500520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.