BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21430251)

  • 1. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Lindsay EA; Han O
    J Food Sci; 2011; 76(5):H143-50. PubMed ID: 22417433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers.
    Kim EY; Pai TK; Han O
    J Agric Food Chem; 2011 Apr; 59(8):3606-12. PubMed ID: 21410257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive dietary polyphenols decrease heme iron absorption by decreasing basolateral iron release in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Han O
    J Nutr; 2010 Jun; 140(6):1117-21. PubMed ID: 20375262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers.
    Kim EY; Ham SK; Shigenaga MK; Han O
    J Nutr; 2008 Sep; 138(9):1647-51. PubMed ID: 18716164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers.
    Konishi Y; Kobayashi S; Shimizu M
    J Agric Food Chem; 2003 Dec; 51(25):7296-302. PubMed ID: 14640574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro.
    Lesjak M; Hoque R; Balesaria S; Skinner V; Debnam ES; Srai SK; Sharp PA
    PLoS One; 2014; 9(7):e102900. PubMed ID: 25058155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferroportin/IREG-1/MTP-1/SLC40A1 modulates the uptake of iron at the apical membrane of enterocytes.
    Thomas C; Oates PS
    Gut; 2004 Jan; 53(1):44-9. PubMed ID: 14684575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.
    Cercamondi CI; Egli IM; Zeder C; Hurrell RF
    Br J Nutr; 2014 Feb; 111(3):481-9. PubMed ID: 23962728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the uptake of iron from Fe(II) ascorbate and Fe(III) citrate by IEC-6 cells and the involvement of ferroportin/IREG-1/MTP-1/SLC40A1.
    Thomas C; Oates PS
    Pflugers Arch; 2004 Jul; 448(4):431-7. PubMed ID: 15114483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. [corrected].
    Singh R; Akhtar N; Haqqi TM
    Life Sci; 2010 Jun; 86(25-26):907-18. PubMed ID: 20462508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.
    Chow HH; Cai Y; Hakim IA; Crowell JA; Shahi F; Brooks CA; Dorr RT; Hara Y; Alberts DS
    Clin Cancer Res; 2003 Aug; 9(9):3312-9. PubMed ID: 12960117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinate expression and localization of iron and zinc transporters explain iron-zinc interactions during uptake in Caco-2 cells: implications for iron uptake at the enterocyte.
    Iyengar V; Pullakhandam R; Nair KM
    J Nutr Biochem; 2012 Sep; 23(9):1146-54. PubMed ID: 22137264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells.
    Maestre R; Douglass JD; Kodukula S; Medina I; Storch J
    J Nutr; 2013 Mar; 143(3):295-301. PubMed ID: 23325921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tea and other dietary factors on iron absorption.
    Zijp IM; Korver O; Tijburg LB
    Crit Rev Food Sci Nutr; 2000 Sep; 40(5):371-98. PubMed ID: 11029010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepcidin inhibits apical iron uptake in intestinal cells.
    Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory Effects of Green Tea and (-)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein.
    Knop J; Misaka S; Singer K; Hoier E; Müller F; Glaeser H; König J; Fromm MF
    PLoS One; 2015; 10(10):e0139370. PubMed ID: 26426900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe3+ opposes the 1,25(OH)2D3-induced calcium transport across intestinal epithelium-like Caco-2 monolayer in the presence or absence of ascorbic acid.
    Phummisutthigoon S; Lertsuwan K; Panupinthu N; Aeimlapa R; Teerapornpuntakit J; Chankamngoen W; Thongbunchoo J; Charoenphandhu N; Wongdee K
    PLoS One; 2022; 17(8):e0273267. PubMed ID: 36040915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro examination of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss).
    Kwong RW; Niyogi S
    J Comp Physiol B; 2008 Nov; 178(8):963-75. PubMed ID: 18542970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.