These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 21430367)
1. Satellite DNA and chromosomal evolution in Ctenomys rodents: a necessary clarification. Rossi MS Cytogenet Genome Res; 2011; 134(2):163-4. PubMed ID: 21430367 [No Abstract] [Full Text] [Related]
2. Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia). Ellingsen A; Slamovits CH; Rossi MS Gene; 2007 May; 392(1-2):283-90. PubMed ID: 17331676 [TBL] [Abstract][Full Text] [Related]
3. Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Slamovits CH; Cook JA; Lessa EP; Rossi MS Mol Biol Evol; 2001 Sep; 18(9):1708-19. PubMed ID: 11504851 [TBL] [Abstract][Full Text] [Related]
4. Chromosomal distribution of the major satellite DNA of South American rodents of the genus Ctenomys. Rossi MS; Redi CA; Viale G; Massarini AI; Capanna E Cytogenet Cell Genet; 1995; 69(3-4):179-84. PubMed ID: 7698006 [TBL] [Abstract][Full Text] [Related]
5. Chromosome plasticity in Ctenomys (Rodentia Octodontidae): chromosome 1 evolution and heterochromatin variation. Novello A; Villar S Genetica; 2006 May; 127(1-3):303-9. PubMed ID: 16850234 [TBL] [Abstract][Full Text] [Related]
6. The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Iberá marsh, Argentina. Caraballo DA; Belluscio PM; Rossi MS Genetica; 2010 Dec; 138(11-12):1201-10. PubMed ID: 21072566 [TBL] [Abstract][Full Text] [Related]
7. The molecular phylogenetics of tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) suggests an early burst of speciation. Lessa EP; Cook JA Mol Phylogenet Evol; 1998 Feb; 9(1):88-99. PubMed ID: 9479698 [TBL] [Abstract][Full Text] [Related]
9. Possible heterochromatin horizontal spread through non-homologous chromosome associations in pachytene chromocenters of Ctenomys Rodents. Novello A; Villar S; Urioste J Cytogenet Genome Res; 2010; 128(1-3):152-61. PubMed ID: 20389031 [TBL] [Abstract][Full Text] [Related]
10. Evidence for rolling-circle replication in a major satellite DNA from the South American rodents of the genus Ctenomys. Rossi MS; Reig OA; Zorzópulos J Mol Biol Evol; 1990 Jul; 7(4):340-50. PubMed ID: 1974692 [TBL] [Abstract][Full Text] [Related]
11. Conserved although very different karyotypes in Gliridae and Sciuridae and their contribution to chromosomal signatures in Glires. Sannier J; Gerbault-Seureau M; Dutrillaux B; Richard FA Cytogenet Genome Res; 2011; 134(1):51-63. PubMed ID: 21430366 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Fry K; Salser W Cell; 1977 Dec; 12(4):1069-84. PubMed ID: 597857 [No Abstract] [Full Text] [Related]
13. An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. Reig OA; Busch C; Ortells MO; Contreras JR Prog Clin Biol Res; 1990; 335():71-96. PubMed ID: 2408081 [No Abstract] [Full Text] [Related]
14. Autosomal rearrangements in Graomys griseoflavus (Rodentia): a model of non-random Robertsonian divergence. Zambelli A; Catanesi CI; Vidal-Rioja L Hereditas; 2003; 139(3):167-73. PubMed ID: 15061797 [TBL] [Abstract][Full Text] [Related]
15. [The mechanisms of formation and evolution of B chromosomes in Korean field mice Apodemus peninsulae (Mammalia, Rodentia)]. Rubtsov NB; Borisov IuM; Karamysheva TV; Bochkarev MN Genetika; 2009 Apr; 45(4):449-57. PubMed ID: 19507698 [TBL] [Abstract][Full Text] [Related]
17. Cytogenetics status of four Ctenomys species in the south of Brazil. de Freitas TR Genetica; 2006 Jan; 126(1-2):227-35. PubMed ID: 16502098 [TBL] [Abstract][Full Text] [Related]