BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 21430694)

  • 1. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis.
    Seyedsayamdost MR; Case RJ; Kolter R; Clardy J
    Nat Chem; 2011 Apr; 3(4):331-5. PubMed ID: 21430694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roseobacticides: small molecule modulators of an algal-bacterial symbiosis.
    Seyedsayamdost MR; Carr G; Kolter R; Clardy J
    J Am Chem Soc; 2011 Nov; 133(45):18343-9. PubMed ID: 21928816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roseochelin B, an Algaecidal Natural Product Synthesized by the Roseobacter Phaeobacter inhibens in Response to Algal Sinapic Acid.
    Wang R; Seyedsayamdost MR
    Org Lett; 2017 Oct; 19(19):5138-5141. PubMed ID: 28920692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic distribution of roseobacticides in the Roseobacter group and their effect on microalgae.
    Sonnenschein EC; Phippen CBW; Bentzon-Tilia M; Rasmussen SA; Nielsen KF; Gram L
    Environ Microbiol Rep; 2018 Jun; 10(3):383-393. PubMed ID: 29624899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules.
    Seyedsayamdost MR; Wang R; Kolter R; Clardy J
    J Am Chem Soc; 2014 Oct; 136(43):15150-3. PubMed ID: 25295497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic metabolic exchange governs a marine algal-bacterial interaction.
    Segev E; Wyche TP; Kim KH; Petersen J; Ellebrandt C; Vlamakis H; Barteneva N; Paulson JN; Chai L; Clardy J; Kolter R
    Elife; 2016 Nov; 5():. PubMed ID: 27855786
    [No Abstract]   [Full Text] [Related]  

  • 7. Bacterial influence on alkenones in live microalgae.
    Segev E; Castañeda IS; Sikes EL; Vlamakis H; Kolter R
    J Phycol; 2016 Feb; 52(1):125-30. PubMed ID: 26987094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera.
    Martens T; Heidorn T; Pukall R; Simon M; Tindall BJ; Brinkhoff T
    Int J Syst Evol Microbiol; 2006 Jun; 56(Pt 6):1293-1304. PubMed ID: 16738106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens.
    Wang R; Gallant É; Seyedsayamdost MR
    mBio; 2016 Mar; 7(2):e02118. PubMed ID: 27006458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis.
    Sule P; Belas R
    J Bacteriol; 2013 Feb; 195(4):637-46. PubMed ID: 23161030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi.
    Bramucci AR; Case RJ
    Sci Rep; 2019 Mar; 9(1):5215. PubMed ID: 30894549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial lifestyle switch in response to algal metabolites.
    Barak-Gavish N; Dassa B; Kuhlisch C; Nussbaum I; Brandis A; Rosenberg G; Avraham R; Vardi A
    Elife; 2023 Jan; 12():. PubMed ID: 36691727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algal p-coumaric acid induces oxidative stress and siderophore biosynthesis in the bacterial symbiont Phaeobacter inhibens.
    Wang R; Gallant É; Wilson MZ; Wu Y; Li A; Gitai Z; Seyedsayamdost MR
    Cell Chem Biol; 2022 Apr; 29(4):670-679.e5. PubMed ID: 34437838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade.
    Thiel V; Brinkhoff T; Dickschat JS; Wickel S; Grunenberg J; Wagner-Döbler I; Simon M; Schulz S
    Org Biomol Chem; 2010 Jan; 8(1):234-46. PubMed ID: 20024154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.
    Bochenek M; Etherington GJ; Koprivova A; Mugford ST; Bell TG; Malin G; Kopriva S
    New Phytol; 2013 Aug; 199(3):650-62. PubMed ID: 23692606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade.
    Zech H; Thole S; Schreiber K; Kalhöfer D; Voget S; Brinkhoff T; Simon M; Schomburg D; Rabus R
    Proteomics; 2009 Jul; 9(14):3677-97. PubMed ID: 19639587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of Surface-Associated Bacteria to the Open Ocean: A Genomically Distinct Subpopulation of
    Freese HM; Methner A; Overmann J
    Front Microbiol; 2017; 8():1659. PubMed ID: 28912769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade.
    Fürch T; Preusse M; Tomasch J; Zech H; Wagner-Döbler I; Rabus R; Wittmann C
    BMC Microbiol; 2009 Sep; 9():209. PubMed ID: 19788729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bacterial Pathogen Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi.
    Mayers TJ; Bramucci AR; Yakimovich KM; Case RJ
    Front Microbiol; 2016; 7():892. PubMed ID: 27379036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of zinc into the coccoliths of the microalga Emiliania huxleyi.
    Santomauro G; Sun WL; Brümmer F; Bill J
    Biometals; 2016 Apr; 29(2):225-34. PubMed ID: 26786763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.