These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21430777)

  • 1. Fault lubrication during earthquakes.
    Di Toro G; Han R; Hirose T; De Paola N; Nielsen S; Mizoguchi K; Ferri F; Cocco M; Shimamoto T
    Nature; 2011 Mar; 471(7339):494-8. PubMed ID: 21430777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle.
    Chen J; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2021 Mar; 126(3):e2020JB021024. PubMed ID: 33868888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behaviour of fluid-lubricated faults.
    Cornelio C; Spagnuolo E; Di Toro G; Nielsen S; Violay M
    Nat Commun; 2019 Mar; 10(1):1274. PubMed ID: 30894547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates.
    Di Toro G; Goldsby DL; Tullis TE
    Nature; 2004 Jan; 427(6973):436-9. PubMed ID: 14749829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes.
    Spagnuolo E; Plümper O; Violay M; Cavallo A; Di Toro G
    Sci Rep; 2015 Nov; 5():16112. PubMed ID: 26552964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An empirically based steady state friction law and implications for fault stability.
    Spagnuolo E; Nielsen S; Violay M; Di Toro G
    Geophys Res Lett; 2016 Apr; 43(7):3263-3271. PubMed ID: 27667875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-thin clay layers facilitate seismic slip in carbonate faults.
    Smeraglia L; Billi A; Carminati E; Cavallo A; Di Toro G; Spagnuolo E; Zorzi F
    Sci Rep; 2017 Apr; 7(1):664. PubMed ID: 28386064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale dependence of rock friction at high work rate.
    Yamashita F; Fukuyama E; Mizoguchi K; Takizawa S; Xu S; Kawakata H
    Nature; 2015 Dec; 528(7581):254-7. PubMed ID: 26659187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subseismic to Seismic Slip in Smectite Clay Nanofoliation.
    Aretusini S; Plümper O; Spagnuolo E; Di Toro G
    J Geophys Res Solid Earth; 2019 Jul; 124(7):6589-6601. PubMed ID: 31894196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seismic Slip-Pulse Experiments Simulate Induced Earthquake Rupture in the Groningen Gas Field.
    Hunfeld LB; Chen J; Niemeijer AR; Ma S; Spiers CJ
    Geophys Res Lett; 2021 Jun; 48(11):e2021GL092417. PubMed ID: 34219831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates.
    Goldsby DL; Tullis TE
    Science; 2011 Oct; 334(6053):216-8. PubMed ID: 21998385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent lab earthquakes in dynamically weakening fault gouge.
    Rubino V; Lapusta N; Rosakis AJ
    Nature; 2022 Jun; 606(7916):922-929. PubMed ID: 35650443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault rock heterogeneity can produce fault weakness and reduce fault stability.
    Bedford JD; Faulkner DR; Lapusta N
    Nat Commun; 2022 Jan; 13(1):326. PubMed ID: 35039494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G: Fracture energy, friction and dissipation in earthquakes.
    Nielsen S; Spagnuolo E; Violay M; Smith S; Di Toro G; Bistacchi A
    J Seismol; 2016; 20(4):1187-1205. PubMed ID: 28190968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earthquake slip weakening and asperities explained by thermal pressurization.
    Wibberley CA; Shimamoto T
    Nature; 2005 Aug; 436(7051):689-92. PubMed ID: 16079843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak phases production and heat generation control fault friction during seismic slip.
    Rattez H; Veveakis M
    Nat Commun; 2020 Jan; 11(1):350. PubMed ID: 31953398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of melt versus mechanical wear on the formation of pseudotachylyte veins in accretionary complexes.
    Moris-Muttoni B; Raimbourg H; Augier R; Champallier R; Le Trong E
    Sci Rep; 2022 Jan; 12(1):1529. PubMed ID: 35087135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frictional Melting in Hydrothermal Fluid-Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile).
    Gomila R; Fondriest M; Jensen E; Spagnuolo E; Masoch S; Mitchell TM; Magnarini G; Bistacchi A; Mittempergher S; Faulkner D; Cembrano J; Di Toro G
    Geochem Geophys Geosyst; 2021 Jul; 22(7):e2021GC009743. PubMed ID: 34434077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanics of sea ice frictional slip from test basin scale experiments.
    Sammonds PR; Hatton DC; Feltham DL
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2086):. PubMed ID: 28025302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical state of water controls friction of gabbro-built faults.
    Feng W; Yao L; Cornelio C; Gomila R; Ma S; Yang C; Germinario L; Mazzoli C; Di Toro G
    Nat Commun; 2023 Aug; 14(1):4612. PubMed ID: 37553361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.