These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2143101)

  • 1. Possible role of acrolein in oxazaphosphorine-induced enhancement of immunological reactivity.
    Blomgren H; Hallström M
    Cancer Immunol Immunother; 1990; 31(4):221-5. PubMed ID: 2143101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible role of acrolein in 4-hydroperoxycyclophosphamide-induced cell damage in vitro.
    Blomgren H; Hallström M
    Methods Find Exp Clin Pharmacol; 1991; 13(1):11-4. PubMed ID: 1908032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of 4-hydroxyperoxycyclophosphamide on human immunoregulatory T subset function.
    Smith JJ; Mihich E; Ozer H
    Methods Find Exp Clin Pharmacol; 1987 Sep; 9(9):555-68. PubMed ID: 2893863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide.
    Brock N; Stekar J; Pohl J; Niemeyer U; Scheffler G
    Arzneimittelforschung; 1979; 29(4):659-61. PubMed ID: 114192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acrolein on phosphoramide mustard-induced sister chromatid exchanges in cultured human lymphocytes.
    Wilmer JL; Erexson GL; Kligerman AD
    Cancer Res; 1990 Aug; 50(15):4635-8. PubMed ID: 2369740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of a votile factor from solutions of oxazaphosphorines which damage normal and malignant cells.
    Blomgren H; Hallström M
    Methods Find Exp Clin Pharmacol; 1989 Jun; 11(6):391-7. PubMed ID: 2747340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of in vivo and in vitro murine immune responses by the cyclophosphamide metabolite acrolein.
    Kawabata TT; White KL
    Cancer Res; 1988 Jan; 48(1):41-5. PubMed ID: 3257162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of in vitro immunosuppression by hepatocyte-generated cyclophosphamide metabolites and 4-hydroperoxycyclophosphamide.
    Kawabata TT; Chapman MY; Kim DH; Stevens WD; Holsapple MP
    Biochem Pharmacol; 1990 Sep; 40(5):927-35. PubMed ID: 2117927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldehyde dehydrogenase activity as the basis for the relative insensitivity of murine pluripotent hematopoietic stem cells to oxazaphosphorines.
    Kohn FR; Sladek NE
    Biochem Pharmacol; 1985 Oct; 34(19):3465-71. PubMed ID: 2996550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of the reactions of 4-hydroperoxycyclophosphamide and acrolein with glutathione, mesna, and WR-1065.
    Tacka KA; Dabrowiak JC; Goodisman J; Souid AK
    Drug Metab Dispos; 2002 Aug; 30(8):875-82. PubMed ID: 12124304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ASTA Z 7557 (INN mafosfamide) a precursor of 4-hydroxy-cyclophosphamide on human T-lymphocytes' Fc-receptors and immunoregulatory functions.
    Saal JG; Hadam M; Frank F; Rautenstrauch H; Fritz P
    Invest New Drugs; 1984; 2(2):231-5. PubMed ID: 6236165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-suppressor cells sensitive to cyclophosphamide and to its in vitro active derivative 4-hydroperoxycyclophosphamide control the mitogenic response of murine splenic B cells to dextran sulfate. A direct proof for different sensitivities of lymphocyte subsets to cyclophosphamide.
    Diamantstein T; Willinger E; Reiman J
    J Exp Med; 1979 Dec; 150(6):1571-6. PubMed ID: 159940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of cytogenetic damage by 2-mercaptoethanesulfonate in cultured human lymphocytes exposed to cyclophosphamide and its reactive metabolites.
    Wilmer JL; Erexson GL; Kligerman AD
    Cancer Res; 1986 Jan; 46(1):203-10. PubMed ID: 3079586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of immune suppressor mechanisms in humans by oxazaphosphorines.
    Berd D; Mastrangelo MJ
    Methods Find Exp Clin Pharmacol; 1987 Sep; 9(9):569-77. PubMed ID: 2963936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of suppressor cell activities by cyclophosphamide in breast cancer patients.
    Kuroi K; Sato Y; Yamaguchi Y; Toge T
    J Clin Lab Anal; 1994; 8(3):123-7. PubMed ID: 8046538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of acrolein in cyclophosphamide teratogenicity in rat embryos in vitro.
    Mirkes PE; Greenaway JC; Rogers JG; Brundrett RB
    Toxicol Appl Pharmacol; 1984 Feb; 72(2):281-91. PubMed ID: 6546458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of cytotoxic T lymphocyte growth from spleens of P815-tumor-bearing host mice with mafosfamide.
    Inge TH; Hoover SK; Frank JL; Kawabata TT; Bethke KP; Bear HD
    Cancer Immunol Immunother; 1992; 35(2):119-26. PubMed ID: 1534514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of murine B- and T-lymphocytes to oxazaphosphorine and non-oxazaphosphorine nitrogen mustards.
    Smith PC; Sladek NE
    Biochem Pharmacol; 1985 Oct; 34(19):3459-63. PubMed ID: 3876834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does acrolein contribute to the cytotoxicity of cyclophosphamide?
    Wrabetz E; Peter G; Hohorst HJ
    J Cancer Res Clin Oncol; 1980; 98(2):119-26. PubMed ID: 7217177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of aldehyde dehydrogenase-mediated oxazaphosphorine resistance on soluble thiols: importance of thiol interactions with the secondary metabolite acrolein.
    Bunting KD; Townsend AJ
    Biochem Pharmacol; 1998 Jul; 56(1):31-9. PubMed ID: 9698086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.