These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21431392)

  • 1. Modelling intrinsic electrophysiological properties of ON and OFF retinal ganglion cells.
    Kameneva T; Meffin H; Burkitt AN
    J Comput Neurosci; 2011 Nov; 31(3):547-61. PubMed ID: 21431392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results.
    Maturana MI; Kameneva T; Burkitt AN; Meffin H; Grayden DB
    J Comput Neurosci; 2014 Apr; 36(2):157-75. PubMed ID: 23835760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-compartment models of retinal ganglion cells with different electrophysiologies.
    Qin W; Hadjinicolaou A; Grayden DB; Meffin H; Burkitt AN; Ibbotson MR; Kameneva T
    Network; 2017; 28(2-4):74-93. PubMed ID: 29649919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina.
    Lipton SA; Tauck DL
    J Physiol; 1987 Apr; 385():361-91. PubMed ID: 2443669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism underlying rebound excitation in retinal ganglion cells.
    Mitra P; Miller RF
    Vis Neurosci; 2007; 24(5):709-31. PubMed ID: 17908349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic current model of rabbit retinal horizontal cell.
    Aoyama T; Kamiyama Y; Usui S; Blanco R; Vaquero CF; de la Villa P
    Neurosci Res; 2000 Jun; 37(2):141-51. PubMed ID: 10867176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells.
    Margolis DJ; Detwiler PB
    J Neurosci; 2007 May; 27(22):5994-6005. PubMed ID: 17537971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.
    Fransén E; Alonso AA; Dickson CT; Magistretti J; Hasselmo ME
    Hippocampus; 2004; 14(3):368-84. PubMed ID: 15132436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation of voltage-activated Na+ and Ca2+ currents in rat retinal ganglion cells.
    Schmid S; Guenther E
    Neuroreport; 1996 Jan; 7(2):677-81. PubMed ID: 8730855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling temporal behavior of postnatal cat retinal ganglion cells.
    Benison G; Keizer J; Chalupa LM; Robinson DW
    J Theor Biol; 2001 May; 210(2):187-99. PubMed ID: 11371174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and inactivation properties of voltage-gated calcium currents in developing cat retinal ganglion cells.
    Huang SJ; Robinson DW
    Neuroscience; 1998 Jul; 85(1):239-47. PubMed ID: 9607715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-clamp analysis and computational model of dopaminergic neurons from mouse retina.
    Xiao J; Cai Y; Yen J; Steffen M; Baxter DA; Feigenspan A; Marshak D
    Vis Neurosci; 2004; 21(6):835-49. PubMed ID: 15733339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents.
    Liu CY; Xiao C; Fraser SE; Lester HA; Koos DS
    J Neurophysiol; 2012 Sep; 108(5):1318-34. PubMed ID: 22649209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential stimulation of ON and OFF retinal ganglion cells: a modeling study.
    Kameneva T; Meffin H; Burkitt AN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4246-9. PubMed ID: 21096639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic mechanisms underlying tonic and phasic firing behaviors in retinal ganglion cells: a model study.
    Wang L; Liang PJ; Zhang PM; Qiu YH
    Channels (Austin); 2014; 8(4):298-307. PubMed ID: 24769919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of voltage-activated calcium currents in zebrafish retinal ganglion cells.
    Huang L; Li L
    J Neurosci Res; 2006 Aug; 84(3):497-504. PubMed ID: 16721759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of intrinsic excitability in mouse retinal ganglion cells.
    Qu J; Myhr KL
    Dev Neurobiol; 2008 Aug; 68(9):1196-212. PubMed ID: 18548483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.