These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 2143151)
1. Kinetic properties of mitochondrial ATPase during isoproterenol-induced cardiomyopathy. Curti C; Uyemura SA; Grecchi MJ; Leone FA Int J Biochem; 1990; 22(6):611-5. PubMed ID: 2143151 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial oligomycin-sensitive ATPase during isoproterenol-induced cell injury of myocardium. Rendón DA; López LF Arch Inst Cardiol Mex; 2000; 70(2):130-5. PubMed ID: 10932797 [TBL] [Abstract][Full Text] [Related]
3. Interaction of fluorescent 3'-[1,5-(dimethylamino)naphthoyl]adenine nucleotides with the solubilized ADP/ATP carrier. Klingenberg M; Mayer I; Appel M Biochemistry; 1985 Jul; 24(14):3650-9. PubMed ID: 2994714 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effect in vitro of PR toxin, a mycotoxin from Penicillium roqueforti, on the mitochondrial HCO-3-ATPase of the rat brain, heart and kidney. Hsieh KP; Yu S; Wei YH; Chen CF; Wei RD Toxicon; 1986; 24(2):153-60. PubMed ID: 2939595 [TBL] [Abstract][Full Text] [Related]
5. Respiration and mitochondrial ATPase in energized mitochondria during isoproterenol-induced cell injury of myocardium. Uyemura SA; Curti C Int J Biochem; 1991; 23(10):1143-9. PubMed ID: 1838529 [TBL] [Abstract][Full Text] [Related]
6. [Effect of disseminated myocardial necrosis on ATPase activity, Ca2+ transport, and lipid peroxidation in cardiac mitochondrial and microsomal membranes]. Chernysheva GV; Stoĭda LV; Amarantova GG; Kuz'mina IL Biull Eksp Biol Med; 1980 May; 89(5):563-5. PubMed ID: 6446946 [TBL] [Abstract][Full Text] [Related]
7. [Synthesis of mitochondrial proteins in isoproterenol-induced damage of the rat myocardium]. Gevorkian GA; Kanaian AS; Voskanian LO Vopr Med Khim; 1989; 35(5):79-83. PubMed ID: 2617945 [TBL] [Abstract][Full Text] [Related]
8. Why are ATP depletion rates in situ in ischemic myocardium so much lower than one might predict from the activity of the mitochondrial ATPase in sonicated heart mitochondria? Rouslin W; Long RB; Broge CW J Mol Cell Cardiol; 1997 Jun; 29(6):1505-10. PubMed ID: 9220337 [No Abstract] [Full Text] [Related]
9. Heart FoF1-ATPase changes during the acute phase of Trypanosoma cruzi infection in rats. Uyemura SA; Jordani MC; Polizello AC; Curti C Mol Cell Biochem; 1996 Dec; 165(2):127-33. PubMed ID: 8979261 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol. Flores GO; Acosta A; Puyou AG Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356 [TBL] [Abstract][Full Text] [Related]
11. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
12. Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5'-triphosphate, an affinity label for adenosine 5'-triphosphate binding sites. Lowe PN; Beechey RB Biochemistry; 1982 Aug; 21(17):4073-82. PubMed ID: 6215060 [TBL] [Abstract][Full Text] [Related]
13. Dynamic modulation of mitochondrial membrane physical properties and ATPase activity by diet lipid. Innis SM; Clandinin MT Biochem J; 1981 Jul; 198(1):167-75. PubMed ID: 6459781 [TBL] [Abstract][Full Text] [Related]
14. Specific and reversible activation and inactivation of the mitochondrial phosphate carrier by cardiolipin and nonionic detergents, respectively. Mende P; Hüther FJ; Kadenbach B FEBS Lett; 1983 Jul; 158(2):331-4. PubMed ID: 6873287 [TBL] [Abstract][Full Text] [Related]
15. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions. Rouslin W J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783 [TBL] [Abstract][Full Text] [Related]
16. Identification and characteristics of a novel mitochondrial ATPase in rat liver. Dubiel W; Henke W; Miura Y; Holzhütter HG; Gerber G Biochem Int; 1987 Jul; 15(1):45-54. PubMed ID: 2969243 [TBL] [Abstract][Full Text] [Related]
17. Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase. Rouslin W Adv Exp Med Biol; 1986; 194():355-73. PubMed ID: 2944359 [No Abstract] [Full Text] [Related]
18. Flux-dependent increase in the stoichiometry of charge translocation by mitochondrial ATPase/ATP synthase induced by almitrine. Rigoulet M; Fraisse L; Ouhabi R; Guérin B; Fontaine E; Leverve X Biochim Biophys Acta; 1990 Jul; 1018(1):91-7. PubMed ID: 2165421 [TBL] [Abstract][Full Text] [Related]
19. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form. Bronnikov GE; Samoylova EV Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638 [TBL] [Abstract][Full Text] [Related]