These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21431709)
1. Engineering elements for gene silencing: the artificial microRNAs technology. Manavella PA; Rubio-Somoza I Methods Mol Biol; 2011; 732():121-30. PubMed ID: 21431709 [TBL] [Abstract][Full Text] [Related]
2. Mimicry technology: suppressing small RNA activity in plants. Rubio-Somoza I; Manavella PA Methods Mol Biol; 2011; 732():131-7. PubMed ID: 21431710 [TBL] [Abstract][Full Text] [Related]
3. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research. Sablok G; Pérez-Quintero AL; Hassan M; Tatarinova TV; López C Biochem Biophys Res Commun; 2011 Mar; 406(3):315-9. PubMed ID: 21329663 [TBL] [Abstract][Full Text] [Related]
4. Expression of artificial microRNAs in Physcomitrella patens. Fattash I; Khraiwesh B; Arif MA; Frank W Methods Mol Biol; 2012; 847():293-315. PubMed ID: 22351018 [TBL] [Abstract][Full Text] [Related]
5. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Eamens AL; Waterhouse PM Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531 [TBL] [Abstract][Full Text] [Related]
6. Gene silencing by artificial microRNAs in Chlamydomonas. Zhao T; Wang W; Bai X; Qi Y Plant J; 2009 Apr; 58(1):157-64. PubMed ID: 19054364 [TBL] [Abstract][Full Text] [Related]
7. Gene silencing in plants using artificial microRNAs and other small RNAs. Ossowski S; Schwab R; Weigel D Plant J; 2008 Feb; 53(4):674-90. PubMed ID: 18269576 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Ai T; Zhang L; Gao Z; Zhu CX; Guo X Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977 [TBL] [Abstract][Full Text] [Related]
9. Gene function analysis by artificial microRNAs in Physcomitrella patens. Khraiwesh B; Fattash I; Arif MA; Frank W Methods Mol Biol; 2011; 744():57-79. PubMed ID: 21533686 [TBL] [Abstract][Full Text] [Related]
10. Artificial microRNAs for specific gene silencing in rice. Warthmann N; Ossowski S; Schwab R; Weigel D Methods Mol Biol; 2013; 956():131-49. PubMed ID: 23135850 [TBL] [Abstract][Full Text] [Related]
11. Downregulation of plant genes with miRNA-induced gene silencing. de Felippes FF Methods Mol Biol; 2013; 942():379-87. PubMed ID: 23027062 [TBL] [Abstract][Full Text] [Related]
12. A two-hit trigger for siRNA biogenesis in plants. Axtell MJ; Jan C; Rajagopalan R; Bartel DP Cell; 2006 Nov; 127(3):565-77. PubMed ID: 17081978 [TBL] [Abstract][Full Text] [Related]
13. Improved method for constructing plant amiRNA vectors with blue-white screening and MAGIC. Yan H; Zhong X; Jiang S; Zhai C; Ma L Biotechnol Lett; 2011 Aug; 33(8):1683-8. PubMed ID: 21479629 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of plant small RNAs based on next-generation sequencing data. Chen M; Meng Y; Gu H; Chen D Comput Biol Chem; 2010 Dec; 34(5-6):308-12. PubMed ID: 21030312 [TBL] [Abstract][Full Text] [Related]
15. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Li Y; Li W; Jin YX Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364 [TBL] [Abstract][Full Text] [Related]
16. Selectable and inheritable gene silencing through RNA interference in the unicellular alga Chlamydomonas reinhardtii. van Dijk K; Sarkar N Methods Mol Biol; 2011; 765():457-76. PubMed ID: 21815110 [TBL] [Abstract][Full Text] [Related]
17. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii. Yamasaki T; Voshall A; Kim EJ; Moriyama E; Cerutti H; Ohama T Plant J; 2013 Dec; 76(6):1045-56. PubMed ID: 24127635 [TBL] [Abstract][Full Text] [Related]
18. Targeted gene silencing by RNA interference in Chlamydomonas. Kim EJ; Cerutti H Methods Cell Biol; 2009; 93():99-110. PubMed ID: 20409813 [TBL] [Abstract][Full Text] [Related]
19. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Eamens AL; McHale M; Waterhouse PM Methods Mol Biol; 2014; 1062():211-24. PubMed ID: 24057368 [TBL] [Abstract][Full Text] [Related]
20. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Bonnet E; Wuyts J; Rouzé P; Van de Peer Y Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]