These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21431758)

  • 1. Computational prediction of RNA structural motifs involved in post-transcriptional regulatory processes.
    Rabani M; Kertesz M; Segal E
    Methods Mol Biol; 2011; 714():467-79. PubMed ID: 21431758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes.
    Rabani M; Kertesz M; Segal E
    Proc Natl Acad Sci U S A; 2008 Sep; 105(39):14885-90. PubMed ID: 18815376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of regulatory modules comprising microRNAs and target genes.
    Yoon S; De Micheli G
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii93-100. PubMed ID: 16204133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micros for microbes: non-coding regulatory RNAs in bacteria.
    Gottesman S
    Trends Genet; 2005 Jul; 21(7):399-404. PubMed ID: 15913835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of microRNA targets in Caenorhabditis elegans.
    Watanabe Y; Yachie N; Numata K; Saito R; Kanai A; Tomita M
    Gene; 2006 Jan; 365():2-10. PubMed ID: 16356665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs.
    Laserson U; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.
    Pavesi G; Mereghetti P; Zambelli F; Stefani M; Mauri G; Pesole G
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W566-70. PubMed ID: 16845071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for microRNA target prediction.
    Watanabe Y; Tomita M; Kanai A
    Methods Enzymol; 2007; 427():65-86. PubMed ID: 17720479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements.
    Huang HY; Chien CH; Jen KH; Huang HD
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W429-34. PubMed ID: 16845041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traces of post-transcriptional RNA modifications in deep sequencing data.
    Findeiss S; Langenberger D; Stadler PF; Hoffmann S
    Biol Chem; 2011 Apr; 392(4):305-13. PubMed ID: 21345160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering cis-regulatory RNAs in Shewanella genomes by Support Vector Machines.
    Xu X; Ji Y; Stormo GD
    PLoS Comput Biol; 2009 Apr; 5(4):e1000338. PubMed ID: 19343219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assigning functions to genes: identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements.
    Zick A; Onn I; Bezalel R; Margalit H; Shlomai J
    Nucleic Acids Res; 2005; 33(13):4235-42. PubMed ID: 16052032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary analysis of miRNA pathway in Schistosoma mansoni.
    Gomes MS; Cabral FJ; Jannotti-Passos LK; Carvalho O; Rodrigues V; Baba EH; Sá RG
    Parasitol Int; 2009 Mar; 58(1):61-8. PubMed ID: 19007911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRECISE: software for prediction of cis-acting regulatory elements.
    Trindade LM; van Berloo R; Fiers M; Visser RG
    J Hered; 2005; 96(5):618-22. PubMed ID: 16135709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NMR structure of the 38 kDa U1A protein - PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein.
    Varani L; Gunderson SI; Mattaj IW; Kay LE; Neuhaus D; Varani G
    Nat Struct Biol; 2000 Apr; 7(4):329-35. PubMed ID: 10742179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.