These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 21431849)

  • 1. Identification of salt-tolerant gene HOG1 in Torulopsis versatilis.
    Cao XX; Meng M; Wang YY; Wang CL; Hou LH
    Biotechnol Lett; 2011 Jul; 33(7):1449-56. PubMed ID: 21431849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome shuffling of Hansenula anomala to improve flavour formation of soy sauce.
    Cao X; Song Q; Wang C; Hou L
    World J Microbiol Biotechnol; 2012 May; 28(5):1857-62. PubMed ID: 22806008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of salt-tolerant gene HOG1 in a Zygosaccharomyces rouxii mutant strain and its parent strain.
    Wei Y; Wang C; Wang M; Cao X; Hou L
    J Sci Food Agric; 2013 Aug; 93(11):2765-70. PubMed ID: 23696268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome sequence of Candida versatilis and comparative analysis with other yeast.
    Hou L; Guo L; Wang C; Wang C
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1131-8. PubMed ID: 27234221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of glycerol 3-phosphate dehydrogenase gene (CvGPD1) in salt-tolerant yeast Candida versatilis is stimulated by high concentrations of NaCl.
    Watanabe Y; Nagayama K; Tamai Y
    Yeast; 2008 Feb; 25(2):107-16. PubMed ID: 17914749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of Na+/H+ antiporter gene (CvNHA1) from salt-tolerant yeast Candida versatilis in Saccharomyces cerevisiae Na+-transporter deficient mutants.
    Watanabe Y; Akita H; Higuchi Y; Tsujimatsu R; Kaneta T; Tamai Y
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1005-14. PubMed ID: 18391463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome sequence of Candida versatilis and osmotolerance analysis in soy sauce fermentation.
    Ruan L; Meng M; Wang C; Hou L
    J Sci Food Agric; 2019 Apr; 99(6):3168-3175. PubMed ID: 30537220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cloning and characterization of an HOG1 MAPK homologous gene CgHOG1 from Candida glycerinogenes].
    Wang C; Zhuge B; Fang H; Zong H; Song J; Zhuge J
    Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1103-10. PubMed ID: 24409766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter.
    Nishikawa A; Mendez B; Jigami Y; Dean N
    Yeast; 2002 Jun; 19(8):691-8. PubMed ID: 12185838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
    Berila N; Borecka S; Dzugasova V; Bojnansky J; Subik J
    Int J Antimicrob Agents; 2009 Jun; 33(6):574-8. PubMed ID: 19196495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress.
    Seidl V; Seiboth B; Karaffa L; Kubicek CP
    Fungal Genet Biol; 2004 Dec; 41(12):1132-40. PubMed ID: 15531216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata.
    Miyazaki T; Inamine T; Yamauchi S; Nagayoshi Y; Saijo T; Izumikawa K; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Kohno S
    FEMS Yeast Res; 2010 May; 10(3):343-52. PubMed ID: 20214686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata.
    Liu L; Xu Q; Li Y; Shi Z; Zhu Y; Du G; Chen J
    Biotechnol Bioeng; 2007 Jul; 97(4):825-32. PubMed ID: 17154310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes.
    Lin CH; Yang SL; Wang NY; Chung KR
    Fungal Genet Biol; 2010 Apr; 47(4):381-91. PubMed ID: 20036749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae.
    Park EH; Lee DH; Seo JH; Kim MD
    J Microbiol Biotechnol; 2011 Mar; 21(3):277-83. PubMed ID: 21464599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome shuffling of Zygosaccharomyces rouxii to accelerate and enhance the flavour formation of soy sauce.
    Cao X; Hou L; Lu M; Wang C; Zeng B
    J Sci Food Agric; 2010 Jan; 90(2):281-5. PubMed ID: 20355043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of salt-tolerance genes in Zygosaccharomyces rouxii.
    Hou L; Wang M; Wang C; Wang C; Wang H
    Appl Biochem Biotechnol; 2013 Jul; 170(6):1417-25. PubMed ID: 23673487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on fermentation performance in the genome shuffled Candida versatilis and wild-type salt tolerant yeast strain.
    Qi W; Guo HL; Wang CL; Hou LH; Cao XH; Liu JF; Lu FP
    J Sci Food Agric; 2017 Jan; 97(1):284-290. PubMed ID: 27012958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.