These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21432016)

  • 1. Macrophage fusion and multinucleated giant cells of inflammation.
    McNally AK; Anderson JM
    Adv Exp Med Biol; 2011; 713():97-111. PubMed ID: 21432016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multinucleated giant cell formation exhibits features of phagocytosis with participation of the endoplasmic reticulum.
    McNally AK; Anderson JM
    Exp Mol Pathol; 2005 Oct; 79(2):126-35. PubMed ID: 16109404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells.
    McNally AK; Anderson JM
    Exp Mol Pathol; 2011 Dec; 91(3):673-81. PubMed ID: 21798256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation.
    McNally AK; Anderson JM
    Am J Pathol; 2002 Feb; 160(2):621-30. PubMed ID: 11839583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022.
    McNally AK; Anderson JM
    Am J Pathol; 2003 Sep; 163(3):1147-56. PubMed ID: 12937156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: Direct visualization of multinucleated giant cell formation.
    Faust JJ; Christenson W; Doudrick K; Ros R; Ugarova TP
    Biomaterials; 2017 Jun; 128():160-171. PubMed ID: 28340410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foreign body-type multinucleated giant cell formation requires protein kinase C beta, delta, and zeta.
    McNally AK; Macewan SR; Anderson JM
    Exp Mol Pathol; 2008 Feb; 84(1):37-45. PubMed ID: 18067888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells.
    McNally AK; Anderson JM
    Am J Pathol; 1995 Nov; 147(5):1487-99. PubMed ID: 7485411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties.
    McNally AK; Anderson JM
    J Biomed Mater Res A; 2015 Apr; 103(4):1380-90. PubMed ID: 25045023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity.
    McNally AK; DeFife KM; Anderson JM
    Am J Pathol; 1996 Sep; 149(3):975-85. PubMed ID: 8780401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation.
    Fais S; Burgio VL; Silvestri M; Capobianchi MR; Pacchiarotti A; Pallone F
    Lab Invest; 1994 Nov; 71(5):737-44. PubMed ID: 7967525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of filamentous actin inhibits human macrophage fusion.
    DeFife KM; Jenney CR; Colton E; Anderson JM
    FASEB J; 1999 May; 13(8):823-32. PubMed ID: 10224226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation.
    Jay SM; Skokos E; Laiwalla F; Krady MM; Kyriakides TR
    Am J Pathol; 2007 Aug; 171(2):632-40. PubMed ID: 17556592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation.
    Arya RK; Goswami R; Rahaman SO
    J Biol Chem; 2021; 296():100129. PubMed ID: 33262217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression.
    DeFife KM; Jenney CR; McNally AK; Colton E; Anderson JM
    J Immunol; 1997 Apr; 158(7):3385-90. PubMed ID: 9120298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular signaling involved in macrophage adhesion and FBGC formation as mediated by ligand-substrate interaction.
    Kao WJ; Liu Y
    J Biomed Mater Res; 2002 Dec; 62(4):478-87. PubMed ID: 12378693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle delivery of miR-223 to attenuate macrophage fusion.
    Moore LB; Sawyer AJ; Saucier-Sawyer J; Saltzman WM; Kyriakides TR
    Biomaterials; 2016 May; 89():127-35. PubMed ID: 26967647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms.
    Yagi M; Ninomiya K; Fujita N; Suzuki T; Iwasaki R; Morita K; Hosogane N; Matsuo K; Toyama Y; Suda T; Miyamoto T
    J Bone Miner Res; 2007 Jul; 22(7):992-1001. PubMed ID: 17402846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism.
    Vignery A
    Int J Exp Pathol; 2000 Oct; 81(5):291-304. PubMed ID: 11168677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage fusion: the making of osteoclasts and giant cells.
    Vignery A
    J Exp Med; 2005 Aug; 202(3):337-40. PubMed ID: 16061722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.