BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21432104)

  • 1. Relationship between questionnaire survey results of vibration complaints of wheelchair users and vibration transmissibility of manual wheelchair.
    Maeda S; Futatsuka M; Yonesaki J; Ikeda M
    Environ Health Prev Med; 2003 Jul; 8(3):82-9. PubMed ID: 21432104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of selected sidewalk pavement surfaces for vibration experienced by users of manual and powered wheelchairs.
    Cooper RA; Wolf E; Fitzgerald SG; Kellerher A; Ammer W; Boninger ML; Cooper R
    J Spinal Cord Med; 2004; 27(5):468-75. PubMed ID: 15648802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of the influence of using polyurethane cushion to reduce vibration received by a wheelchair user.
    Chwalik-Pilszyk G; Dziechciowski Z; Kromka-Szydek M; Kozień MS
    Acta Bioeng Biomech; 2023; 25(1):137-149. PubMed ID: 38314552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of whole-body vibration during manual wheelchair propulsion: a comparison of seat cushions and back supports for individuals without a disability.
    DiGiovine CP; Cooper RA; Wolf E; Fitzgerald SG; Boninger ML
    Assist Technol; 2003; 15(2):129-44. PubMed ID: 15137730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of vibrations induced during wheelchair propulsion.
    VanSickle DP; Cooper RA; Boninger ML; DiGiovine CP
    J Rehabil Res Dev; 2001; 38(4):409-21. PubMed ID: 11563494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ride comfort and segmental vibration transmissibility analysis of an automobile passenger model under whole body vibration.
    Guruguntla V; Lal M; Ghantasala GSP; Vidyullatha P; Alqahtani MS; Alsubaie N; Abbas M; Soufiene BO
    Sci Rep; 2023 Jul; 13(1):11619. PubMed ID: 37464006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.
    Basri B; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1461-74. PubMed ID: 24793821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-body vibration during manual wheelchair propulsion with selected seat cushions and back supports.
    DiGiovine CP; Cooper RA; Fitzgerald SG; Boninger ML; Wolf EJ; Guo S
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):311-22. PubMed ID: 14518796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension.
    Cooper RA; Wolf E; Fitzgerald SG; Boninger ML; Ulerich R; Ammer WA
    Arch Phys Med Rehabil; 2003 Jan; 84(1):96-102. PubMed ID: 12589628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User assessment of manual wheelchair ride comfort and ergonomics.
    DiGiovine MM; Cooper RA; Boninger ML; Lawrence BM; VanSickle DP; Rentschler AJ
    Arch Phys Med Rehabil; 2000 Apr; 81(4):490-4. PubMed ID: 10768541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of seat structural dynamics on current ride comfort criteria.
    Fard M; Lo L; Subic A; Jazar R
    Ergonomics; 2014; 57(10):1549-61. PubMed ID: 25017144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal assessment of vibrations during manual and power wheelchair driving over select sidewalk surfaces.
    Wolf E; Cooper RA; Pearlman J; Fitzgerald SG; Kelleher A
    J Rehabil Res Dev; 2007; 44(4):573-80. PubMed ID: 18247254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic stiffness and transmissibility of commercially available wheelchair cushions using a laboratory test method.
    Garcia-Mendez Y; Pearlman JL; Cooper RA; Boninger ML
    J Rehabil Res Dev; 2012; 49(1):7-22. PubMed ID: 22492334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Rear Wheel Suspension on Tilt-in-Space Wheelchair Shock and Vibration Attenuation.
    Hischke M; Reiser RF
    PM R; 2018 Oct; 10(10):1040-1050. PubMed ID: 29477411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A seated human model for predicting the coupled human-seat transmissibility exposed to fore-aft whole-body vibration.
    Kim E; Fard M; Kato K
    Appl Ergon; 2020 Apr; 84():102929. PubMed ID: 31884179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.
    Baig HA; Dorman DB; Bulka BA; Shivers BL; Chancey VC; Winkelstein BA
    J Biomech Eng; 2014 Oct; 136(10):101002. PubMed ID: 25010637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions.
    Welcome DE; Dong RG; Xu XS; Warren C; McDowell TW; Wu JZ
    Int J Ind Ergon; 2015 Feb; 45():21-34. PubMed ID: 26635424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of wheelchair frame material on users' mechanical work and transmitted vibration.
    Chénier F; Aissaoui R
    Biomed Res Int; 2014; 2014():609369. PubMed ID: 25276802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration.
    Zhou Z; Griffin MJ
    Ergonomics; 2014; 57(5):714-32. PubMed ID: 24730710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration exposure of individuals using wheelchairs over sidewalk surfaces.
    Wolf E; Pearlman J; Cooper RA; Fitzgerald SG; Kelleher A; Collins DM; Boninger ML; Cooper R
    Disabil Rehabil; 2005 Dec; 27(23):1443-9. PubMed ID: 16418059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.