These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21432890)

  • 41. Recursive least squares background prediction of univariate syndromic surveillance data.
    Najmi AH; Burkom H
    BMC Med Inform Decis Mak; 2009 Jan; 9():4. PubMed ID: 19149886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retrospective time series analysis of veterinary laboratory data: preparing a historical baseline for cluster detection in syndromic surveillance.
    Dórea FC; Revie CW; McEwen BJ; McNab WB; Kelton D; Sanchez J
    Prev Vet Med; 2013 May; 109(3-4):219-27. PubMed ID: 23154104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hospital electronic medical record-based public health surveillance system deployed during the 2002 Winter Olympic Games.
    Gundlapalli AV; Olson J; Smith SP; Baza M; Hausam RR; Eutropius LJ; Pestotnik SL; Duncan K; Staggers N; Pincetl P; Samore MH
    Am J Infect Control; 2007 Apr; 35(3):163-71. PubMed ID: 17433939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epidemic simulation for syndromic surveillance.
    Clarke TL; Liberman A; Wang M; Nieves K; Cattani J; Sumner J
    Health Care Manag (Frederick); 2007; 26(4):297-302. PubMed ID: 17992102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding.
    Shen Y; Adamou C; Dowling JN; Cooper GF
    J Biomed Inform; 2008 Apr; 41(2):224-31. PubMed ID: 18194876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polychotomization of continuous variables in regression models based on the overall C index.
    Tsuruta H; Bax L
    BMC Med Inform Decis Mak; 2006 Dec; 6():41. PubMed ID: 17169154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Conceptual Architecture for National Biosurveillance: Moving Beyond Situational Awareness to Enable Digital Detection of Emerging Threats.
    Velsko S; Bates T
    Health Secur; 2016; 14(3):189-201. PubMed ID: 27314659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multichart Schemes for Detecting Changes in Disease Incidence.
    Engmann GM; Han D
    Comput Math Methods Med; 2020; 2020():7267801. PubMed ID: 32508978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laboratory-guided detection of disease outbreaks: three generations of surveillance systems.
    Sintchenko V; Gallego B
    Arch Pathol Lab Med; 2009 Jun; 133(6):916-25. PubMed ID: 19492884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Choosing the best algorithm for event detection based on the intended application: A conceptual framework for syndromic surveillance.
    Faverjon C; Berezowski J
    J Biomed Inform; 2018 Sep; 85():126-135. PubMed ID: 30092359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Practical comparison of aberration detection algorithms for biosurveillance systems.
    Zhou H; Burkom H; Winston CA; Dey A; Ajani U
    J Biomed Inform; 2015 Oct; 57():446-55. PubMed ID: 26334478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing time-series detection algorithms for automated biosurveillance.
    Tokars JI; Burkom H; Xing J; English R; Bloom S; Cox K; Pavlin JA
    Emerg Infect Dis; 2009 Apr; 15(4):533-9. PubMed ID: 19331728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An improved algorithm for outbreak detection in multiple surveillance systems.
    Noufaily A; Enki DG; Farrington P; Garthwaite P; Andrews N; Charlett A
    Stat Med; 2013 Mar; 32(7):1206-22. PubMed ID: 22941770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of sliding baseline methods for spatial estimation for cluster detection in the biosurveillance system.
    Xing J; Burkom H; Moniz L; Edgerton J; Leuze M; Tokars J
    Int J Health Geogr; 2009 Jul; 8():45. PubMed ID: 19615075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An evaluation of three policies for updating product categories in the National Retail Data Monitor.
    Hogan WR; Wallstrom GL; Wagner MM
    AMIA Annu Symp Proc; 2005; 2005():325-9. PubMed ID: 16779055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving Biosurveillance Systems to Enable Situational Awareness During Public Health Emergencies.
    Nuzzo JB
    Health Secur; 2017; 15(1):17-19. PubMed ID: 28092456
    [No Abstract]   [Full Text] [Related]  

  • 57. An extensible framework and database of infectious disease for biosurveillance.
    Daughton AR; Priedhorsky R; Fairchild G; Generous N; Hengartner A; Abeyta E; Velappan N; Lillo A; Stark K; Deshpande A
    BMC Infect Dis; 2017 Aug; 17(1):549. PubMed ID: 28784113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Veterinary syndromic surveillance in practice: costs and benefits for governmental organizations.
    Dórea FC; Lindberg A; Elvander M
    Infect Ecol Epidemiol; 2015; 5():29973. PubMed ID: 26634845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Editorial for the special issue of "Statistical Methods in Medical Research" on "Advanced ROC analysis".
    Nakas CT; Reiser B
    Stat Methods Med Res; 2018 Mar; 27(3):649-650. PubMed ID: 29187064
    [No Abstract]   [Full Text] [Related]  

  • 60. Assessment of Local Health Department Utility of Syndromic Surveillance: Results of the 2015 Biosurveillance Needs Assessment Survey.
    Chughtai S; DeVore K; Kan L; Streichert LC
    J Public Health Manag Pract; 2016; 22 Suppl 6, Public Health Informatics(Suppl 6):S69-S74. PubMed ID: 27684622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.