These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 21432999)
1. Concerted action of the new Genomic Peptide Finder and AUGUSTUS allows for automated proteogenomic annotation of the Chlamydomonas reinhardtii genome. Specht M; Stanke M; Terashima M; Naumann-Busch B; Janssen I; Höhner R; Hom EF; Liang C; Hippler M Proteomics; 2011 May; 11(9):1814-23. PubMed ID: 21432999 [TBL] [Abstract][Full Text] [Related]
2. Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Allmer J; Naumann B; Markert C; Zhang M; Hippler M Proteomics; 2006 Dec; 6(23):6207-20. PubMed ID: 17078018 [TBL] [Abstract][Full Text] [Related]
3. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
4. Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics. Ding J; Li X; Hu H Plant Physiol; 2012 Oct; 160(2):613-23. PubMed ID: 22915576 [TBL] [Abstract][Full Text] [Related]
5. Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. May P; Wienkoop S; Kempa S; Usadel B; Christian N; Rupprecht J; Weiss J; Recuenco-Munoz L; Ebenhöh O; Weckwerth W; Walther D Genetics; 2008 May; 179(1):157-66. PubMed ID: 18493048 [TBL] [Abstract][Full Text] [Related]
6. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Stanke M; Tzvetkova A; Morgenstern B Genome Biol; 2006; 7 Suppl 1(Suppl 1):S11.1-8. PubMed ID: 16925833 [TBL] [Abstract][Full Text] [Related]
7. Predicting Genes in Single Genomes with AUGUSTUS. Hoff KJ; Stanke M Curr Protoc Bioinformatics; 2019 Mar; 65(1):e57. PubMed ID: 30466165 [TBL] [Abstract][Full Text] [Related]
8. A proteogenomic survey of the Medicago truncatula genome. Volkening JD; Bailey DJ; Rose CM; Grimsrud PA; Howes-Podoll M; Venkateshwaran M; Westphall MS; Ané JM; Coon JJ; Sussman MR Mol Cell Proteomics; 2012 Oct; 11(10):933-44. PubMed ID: 22774004 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. Labadorf A; Link A; Rogers MF; Thomas J; Reddy AS; Ben-Hur A BMC Genomics; 2010 Feb; 11():114. PubMed ID: 20163725 [TBL] [Abstract][Full Text] [Related]
11. Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoring. Usuka J; Brendel V J Mol Biol; 2000 Apr; 297(5):1075-85. PubMed ID: 10764574 [TBL] [Abstract][Full Text] [Related]
12. The different proteomes of Chlamydomonas reinhardtii. Valledor L; Recuenco-Munoz L; Egelhofer V; Wienkoop S; Weckwerth W J Proteomics; 2012 Oct; 75(18):5883-7. PubMed ID: 22967953 [TBL] [Abstract][Full Text] [Related]
13. Integrating alternative splicing detection into gene prediction. Foissac S; Schiex T BMC Bioinformatics; 2005 Feb; 6():25. PubMed ID: 15705189 [TBL] [Abstract][Full Text] [Related]
14. Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. Rivier C; Goldschmidt-Clermont M; Rochaix JD EMBO J; 2001 Apr; 20(7):1765-73. PubMed ID: 11285239 [TBL] [Abstract][Full Text] [Related]
16. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA. Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR Gene; 2020 Dec; 763S():100035. PubMed ID: 34493371 [TBL] [Abstract][Full Text] [Related]
17. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. Keller O; Odronitz F; Stanke M; Kollmar M; Waack S BMC Bioinformatics; 2008 Jun; 9():278. PubMed ID: 18554390 [TBL] [Abstract][Full Text] [Related]
18. The Chlamydomonas genome project: a decade on. Blaby IK; Blaby-Haas CE; Tourasse N; Hom EF; Lopez D; Aksoy M; Grossman A; Umen J; Dutcher S; Porter M; King S; Witman GB; Stanke M; Harris EH; Goodstein D; Grimwood J; Schmutz J; Vallon O; Merchant SS; Prochnik S Trends Plant Sci; 2014 Oct; 19(10):672-80. PubMed ID: 24950814 [TBL] [Abstract][Full Text] [Related]
19. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Gallaher SD; Fitz-Gibbon ST; Strenkert D; Purvine SO; Pellegrini M; Merchant SS Plant J; 2018 Feb; 93(3):545-565. PubMed ID: 29172250 [TBL] [Abstract][Full Text] [Related]