These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21433139)

  • 21. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides.
    Zhou P; Deng L; Wang Y; Lu JR; Xu H
    J Colloid Interface Sci; 2016 Feb; 464():219-28. PubMed ID: 26619132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computationally designed peptides for self-assembly of nanostructured lattices.
    Zhang HV; Polzer F; Haider MJ; Tian Y; Villegas JA; Kiick KL; Pochan DJ; Saven JG
    Sci Adv; 2016 Sep; 2(9):e1600307. PubMed ID: 27626071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous construction of nanoperiodic architecture by two-dimensional self-assembly of an amphiphilic peptide-polyethylene glycol conjugate at the solid/water interface.
    Tanaka M; Abiko S; Koshikawa N; Katsuta M; Kinoshita T
    J Colloid Interface Sci; 2014 Mar; 417():137-43. PubMed ID: 24407669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycoconjugate nanoribbons from the self-assembly of carbohydrate-peptide block molecules for controllable bacterial cell cluster formation.
    Lim YB; Park S; Lee E; Jeong H; Ryu JH; Lee MS; Lee M
    Biomacromolecules; 2007 May; 8(5):1404-8. PubMed ID: 17397218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical comparison of self-assembling alpha- and beta-peptide nanostructures: toward design of beta-barrel frameworks.
    Beke T; Czajlik A; Bálint B; Perczel A
    ACS Nano; 2008 Mar; 2(3):545-53. PubMed ID: 19206581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructures from the self-assembly of α-helical peptide amphiphiles.
    Meng Q; Kou Y; Ma X; Guo L; Liu K
    J Pept Sci; 2014 Mar; 20(3):223-8. PubMed ID: 24478261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The alkyl linkers in tandem-homodimers of a β-sheet-forming nonapeptide affect the self-assembled nanostructures.
    Tomizaki KY; Tanaka A; Shimada H; Nishizawa K; Wada T; Imai T
    Bioorg Med Chem Lett; 2016 Jun; 26(11):2659-62. PubMed ID: 27117426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes.
    Hanski S; Houbenov N; Ruokolainen J; Chondronicola D; Iatrou H; Hadjichristidis N; Ikkala O
    Biomacromolecules; 2006 Dec; 7(12):3379-84. PubMed ID: 17154466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide synthesis and self-assembly.
    Maude S; Tai LR; Davies RP; Liu B; Harris SA; Kocienski PJ; Aggeli A
    Top Curr Chem; 2012; 310():27-69. PubMed ID: 22025061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides.
    Shao H; Nguyen T; Romano NC; Modarelli DA; Parquette JR
    J Am Chem Soc; 2009 Nov; 131(45):16374-6. PubMed ID: 19852501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathway-dependent self-assembly of perylene diimide/peptide conjugates in aqueous medium.
    Tidhar Y; Weissman H; Wolf SG; Gulino A; Rybtchinski B
    Chemistry; 2011 May; 17(22):6068-75. PubMed ID: 21542033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled arginine-coated peptide nanosheets in water.
    Hamley IW; Dehsorkhi A; Castelletto V
    Chem Commun (Camb); 2013 Mar; 49(18):1850-2. PubMed ID: 23360959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrathin gold nanoribbons synthesized within the interior cavity of a self-assembled peptide nanoarchitecture.
    Tomizaki KY; Wakizaka S; Yamaguchi Y; Kobayashi A; Imai T
    Langmuir; 2014 Jan; 30(3):846-56. PubMed ID: 24432735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient fibril structures facilitating nonenzymatic self-replication.
    Rubinov B; Wagner N; Matmor M; Regev O; Ashkenasy N; Ashkenasy G
    ACS Nano; 2012 Sep; 6(9):7893-901. PubMed ID: 22856322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled arrays of self-assembled peptide nanostructures in solution and at interface.
    Wang JX; Lei Q; Luo GF; Cai TT; Li JL; Cheng SX; Zhuo RX; Zhang XZ
    Langmuir; 2013 Jun; 29(23):6996-7004. PubMed ID: 23663135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptides as new smart bionanomaterials: molecular-recognition and self-assembly capabilities.
    Sawada T; Mihara H; Serizawa T
    Chem Rec; 2013 Apr; 13(2):172-86. PubMed ID: 23468140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Templating silica nanostructures on rationally designed self-assembled peptide fibers.
    Holmström SC; King PJ; Ryadnov MG; Butler MF; Mann S; Woolfson DN
    Langmuir; 2008 Oct; 24(20):11778-83. PubMed ID: 18759469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide.
    Guy MM; Voyer N
    Biophys Chem; 2012 Apr; 163-164():1-10. PubMed ID: 22386803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.