These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21433206)

  • 1. Macromolecular recognition: discrimination between human and bovine serum albumins by cyclodextrins.
    Oi W; Isobe M; Hashidzume A; Harada A
    Macromol Rapid Commun; 2011 Mar; 32(6):501-5. PubMed ID: 21433206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.
    Goncharova I; Orlov S; Urbanová M
    Biophys Chem; 2013; 180-181():55-65. PubMed ID: 23838624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of some modified mono- and bis-beta-cyclodextrins with bovine serum albumin.
    Gao H; Wang YN; Fan YG; Ma JB
    Bioorg Med Chem; 2006 Jan; 14(1):131-7. PubMed ID: 16183293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding interaction of a biological photosensitizer with serum albumins: a biophysical study.
    Chakrabarty A; Mallick A; Haldar B; Das P; Chattopadhyay N
    Biomacromolecules; 2007 Mar; 8(3):920-7. PubMed ID: 17315924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-dependent stereoselective drug binding to albumin: a circular dichroism study.
    Pistolozzi M; Bertucci C
    Chirality; 2008 Mar; 20(3-4):552-8. PubMed ID: 18172833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photobehavior and docking simulations of drug within macromolecules: binding of an antioxidative isoquinolindione to a serine protease and albumin proteins.
    Dhar S; Rana DK; Pal A; Bhattacharya SC
    J Photochem Photobiol B; 2013 Dec; 129():69-77. PubMed ID: 24177206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Förster resonance energy transfer between pyrene and bovine serum albumin: effect of the hydrophobic pockets of cyclodextrins.
    Maity A; Mukherjee P; Das T; Ghosh P; Purkayastha P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():382-7. PubMed ID: 22446788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular β-sheet formation.
    Bhattacharya A; Prajapati R; Chatterjee S; Mukherjee TK
    Langmuir; 2014 Dec; 30(49):14894-904. PubMed ID: 25409497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential ability of different types of cyclodextrins to modulate the interaction between bovine serum albumin and 1-hydroxypyrene.
    Zhang J; Zhu Y; Zhang Y
    Food Chem; 2021 May; 343():128516. PubMed ID: 33183870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method.
    Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():321-30. PubMed ID: 22484270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the perturbation of serum albumins by a ketocyanine dye: a spectroscopic approach.
    Sarkar D; Mahata A; Das P; Girigoswami A; Ghosh D; Chattopadhyay N
    J Photochem Photobiol B; 2009 Aug; 96(2):136-43. PubMed ID: 19539494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3,6-diHydroxyflavone/bovine serum albumin interaction in cyclodextrin medium: absorption and emission monitoring.
    Voicescu M; Bandula R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():628-36. PubMed ID: 25541401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating 2,2'-bipyridine-3,3'-diol as a microenvironment-sensitive probe: its binding to cyclodextrins and human serum albumin.
    Abou-Zied OK
    J Phys Chem B; 2007 Aug; 111(33):9879-85. PubMed ID: 17655352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages.
    Liu Y; Liu Y; Guo R
    J Colloid Interface Sci; 2010 Nov; 351(1):180-9. PubMed ID: 20701921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the Interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach.
    Pan X; Qin P; Liu R; Wang J
    J Agric Food Chem; 2011 Jun; 59(12):6650-6. PubMed ID: 21591756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-selective interactions: squaraine dye-serum albumin complexes with enhanced fluorescence and triplet yields.
    Jisha VS; Arun KT; Hariharan M; Ramaiah D
    J Phys Chem B; 2010 May; 114(17):5912-9. PubMed ID: 20380473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the binding of the drugs diclofenac sodium and cefotaxime sodium to serum albumin: calorimetry and spectroscopy.
    Sharma R; Choudhary S; Kishore N
    Eur J Pharm Sci; 2012 Aug; 46(5):435-45. PubMed ID: 22483968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypsin inhibitor complexes with human and bovine serum albumins: TEM and spectroscopic analysis.
    Hebia C; Bekale L; Chanphai P; Agbebavi J; Tajmir-Riahi HA
    J Photochem Photobiol B; 2014 Jan; 130():254-9. PubMed ID: 24362321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Merocyanine 540 with serum albumins: photophysical and binding studies.
    Banerjee M; Pal U; Subudhhi A; Chakrabarti A; Basu S
    J Photochem Photobiol B; 2012 Mar; 108():23-33. PubMed ID: 22264940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.