These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21433284)
1. Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Arc E; Galland M; Cueff G; Godin B; Lounifi I; Job D; Rajjou L Proteomics; 2011 May; 11(9):1606-18. PubMed ID: 21433284 [TBL] [Abstract][Full Text] [Related]
2. Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Bykova NV; Hoehn B; Rampitsch C; Banks T; Stebbing JA; Fan T; Knox R Proteomics; 2011 Mar; 11(5):865-82. PubMed ID: 21280218 [TBL] [Abstract][Full Text] [Related]
3. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Pawłowski TA Proteomics; 2007 Jun; 7(13):2246-57. PubMed ID: 17533642 [TBL] [Abstract][Full Text] [Related]
4. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion. Finnie C; Andersen B; Shahpiri A; Svensson B Proteomics; 2011 May; 11(9):1595-605. PubMed ID: 21433287 [TBL] [Abstract][Full Text] [Related]
5. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. Pawłowski TA BMC Plant Biol; 2009 May; 9():48. PubMed ID: 19413897 [TBL] [Abstract][Full Text] [Related]
6. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Radchuk R; Radchuk V; Götz KP; Weichert H; Richter A; Emery RJ; Weschke W; Weber H Plant J; 2007 Sep; 51(5):819-39. PubMed ID: 17692079 [TBL] [Abstract][Full Text] [Related]
7. Proteomics and posttranslational proteomics of seed dormancy and germination. Rajjou L; Belghazi M; Catusse J; Ogé L; Arc E; Godin B; Chibani K; Ali-Rachidi S; Collet B; Grappin P; Jullien M; Gallardo K; Job C; Job D Methods Mol Biol; 2011; 773():215-36. PubMed ID: 21898259 [TBL] [Abstract][Full Text] [Related]
8. First off the mark: early seed germination. Weitbrecht K; Müller K; Leubner-Metzger G J Exp Bot; 2011 Jun; 62(10):3289-309. PubMed ID: 21430292 [TBL] [Abstract][Full Text] [Related]
9. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. Hermann K; Meinhard J; Dobrev P; Linkies A; Pesek B; Hess B; Machácková I; Fischer U; Leubner-Metzger G J Exp Bot; 2007; 58(11):3047-60. PubMed ID: 17761730 [TBL] [Abstract][Full Text] [Related]
10. Seed after-ripening and over-expression of class I beta-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Leubner-Metzger G Planta; 2002 Oct; 215(6):959-68. PubMed ID: 12355156 [TBL] [Abstract][Full Text] [Related]
11. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852 [TBL] [Abstract][Full Text] [Related]
13. Profiling of hormones and related metabolites in seed dormancy and germination studies. Seo M; Jikumaru Y; Kamiya Y Methods Mol Biol; 2011; 773():99-111. PubMed ID: 21898252 [TBL] [Abstract][Full Text] [Related]
14. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Seo M; Hanada A; Kuwahara A; Endo A; Okamoto M; Yamauchi Y; North H; Marion-Poll A; Sun TP; Koshiba T; Kamiya Y; Yamaguchi S; Nambara E Plant J; 2006 Nov; 48(3):354-66. PubMed ID: 17010113 [TBL] [Abstract][Full Text] [Related]
16. Post-genomics dissection of seed dormancy and germination. Holdsworth MJ; Finch-Savage WE; Grappin P; Job D Trends Plant Sci; 2008 Jan; 13(1):7-13. PubMed ID: 18160329 [TBL] [Abstract][Full Text] [Related]
17. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae). Chen SY; Chien CT; Baskin JM; Baskin CC Tree Physiol; 2010 Feb; 30(2):275-84. PubMed ID: 20008838 [TBL] [Abstract][Full Text] [Related]
18. [Affection of exogenous gibberellic acid (GA3) on endogenus hormones of Panax quinquefolium seed during its morphological after ripening period]. Zhao Y; Liu H; Liu T; Fu J; Liu W; Zhang X Zhong Yao Cai; 2000 Oct; 23(10):591-3. PubMed ID: 12575034 [TBL] [Abstract][Full Text] [Related]
19. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome- and proteome-wide analyses of seed germination. Catusse J; Job C; Job D C R Biol; 2008 Oct; 331(10):815-22. PubMed ID: 18926496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]