These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21434650)

  • 1. Recovery of uranium from mine waste by leaching with carbonate-based reagents.
    Santos EA; Ladeira AC
    Environ Sci Technol; 2011 Apr; 45(8):3591-7. PubMed ID: 21434650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.
    Mulopo J; Radebe V
    Water Sci Technol; 2012; 66(6):1296-300. PubMed ID: 22828309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial leaching of waste uranium materials.
    Barbic FF; Bracilović DM; Krajincanić BV; Lucić JL
    Z Allg Mikrobiol; 1976; 16(3):179-86. PubMed ID: 788361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.
    Lottermoser BG; Schnug E; Haneklaus S
    Sci Total Environ; 2011 Aug; 409(18):3512-9. PubMed ID: 21696804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I soil chemical characterization.
    Pereira R; Antunes SC; Marques SM; Gonçalves F
    Sci Total Environ; 2008 Feb; 390(2-3):377-86. PubMed ID: 17919686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and remediation of soils contaminated with uranium.
    Gavrilescu M; Pavel LV; Cretescu I
    J Hazard Mater; 2009 Apr; 163(2-3):475-510. PubMed ID: 18771850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of waste gypsum-based precipitated calcium carbonate for acid mine drainage neutralization.
    Zvimba JN; Mulopo J; Bologo LT; Mathye M
    Water Sci Technol; 2012; 65(9):1577-82. PubMed ID: 22508119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal.
    Gomes AF; Lopez DL; Ladeira AC
    J Hazard Mater; 2012 Jan; 199-200():418-25. PubMed ID: 22138170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.
    Klimkova S; Cernik M; Lacinova L; Filip J; Jancik D; Zboril R
    Chemosphere; 2011 Feb; 82(8):1178-84. PubMed ID: 21193219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.
    Jagetiya B; Sharma A
    Chemosphere; 2013 Apr; 91(5):692-6. PubMed ID: 23267730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste.
    Pérez-López R; Castillo J; Quispe D; Nieto JM
    J Hazard Mater; 2010 May; 177(1-3):762-72. PubMed ID: 20080339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of pH, organic matter and (226)radium/calcium partitioning in U-mining debris following revegetation with pine trees.
    Thiry Y; Van Hees M
    Sci Total Environ; 2008 Apr; 393(1):111-7. PubMed ID: 18207491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bench- and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants.
    Francis CW; Timpson ME; Wilson JH
    J Hazard Mater; 1999 Apr; 66(1-2):67-87. PubMed ID: 10379031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and desorption of uranium (VI) in aerated zone soil.
    Li X; Wu J; Liao J; Zhang D; Yang J; Feng Y; Zeng J; Wen W; Yang Y; Tang J; Liu N
    J Environ Radioact; 2013 Jan; 115():143-50. PubMed ID: 22939949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential impact of former Zn ore extraction activities on dissolved uranium distribution in the Riou-Mort watershed (France).
    Saari HK; Schmidt S; Coynel A; Huguet S; Schäfer J; Blanc G
    Sci Total Environ; 2007 Sep; 382(2-3):304-10. PubMed ID: 17544484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine.
    Borch T; Roche N; Johnson TE
    J Environ Monit; 2012 Jul; 14(7):1814-23. PubMed ID: 22706154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics.
    Lawrence CE; Akber RA; Bollhöfer A; Martin P
    J Environ Radioact; 2009 Jan; 100(1):1-8. PubMed ID: 18995934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne gamma survey of the historic Sleisbeck mine area in the Northern Territory, Australia, and its use for site rehabilitation planning.
    Bollhöfer A; Pfitzner K; Ryan B; Martin P; Fawcett M; Jones DR
    J Environ Radioact; 2008 Nov; 99(11):1770-4. PubMed ID: 18768242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.