BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21434661)

  • 1. Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant.
    Yang J; Yin H; Jia J; Wei Y
    Langmuir; 2011 Apr; 27(8):5047-53. PubMed ID: 21434661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media.
    Natsuki J; Abe T
    J Colloid Interface Sci; 2011 Jul; 359(1):19-23. PubMed ID: 21507416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.
    Byeon JH; Kim YW
    Ultrason Sonochem; 2012 Jan; 19(1):209-15. PubMed ID: 21727021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study.
    Al-Thabaiti SA; Al-Nowaiser FM; Obaid AY; Al-Youbi AO; Khan Z
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):230-7. PubMed ID: 18922685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded silver ions-containing liposomes in polyelectrolyte multilayers: cargos films for antibacterial agents.
    Malcher M; Volodkin D; Heurtault B; André P; Schaaf P; Möhwald H; Voegel JC; Sokolowski A; Ball V; Boulmedais F; Frisch B
    Langmuir; 2008 Sep; 24(18):10209-15. PubMed ID: 18698855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of concentrated stable dispersions of uniform Ag nanoparticles using resorcinol as reductant.
    Kumar A; Aerry S; Goia DV
    J Colloid Interface Sci; 2016 May; 470():196-203. PubMed ID: 26945115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.
    Yu D; Yam VW
    J Phys Chem B; 2005 Mar; 109(12):5497-503. PubMed ID: 16851589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature.
    Dong Q; Su H; Zhang D
    J Phys Chem B; 2005 Sep; 109(37):17429-34. PubMed ID: 16853228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Ag-nanoparticles using aspartic acid in aqueous solutions.
    Rafey A; Shrivastavaa KB; Iqbal SA; Khan Z
    J Colloid Interface Sci; 2011 Feb; 354(1):190-5. PubMed ID: 21074776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions.
    Khan Z; Al-Thabaiti SA; El-Mossalamy EH; Obaid AY
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):284-8. PubMed ID: 19559581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.
    Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM
    Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-poly(o-methoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: physical and electronic properties.
    Routh P; Mukherjee P; Nandi AK
    Langmuir; 2010 Apr; 26(7):5093-100. PubMed ID: 20020756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):327-31. PubMed ID: 21030295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3.
    Anil Kumar S; Abyaneh MK; Gosavi SW; Kulkarni SK; Pasricha R; Ahmad A; Khan MI
    Biotechnol Lett; 2007 Mar; 29(3):439-45. PubMed ID: 17237973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process.
    Chen M; Wang LY; Han JT; Zhang JY; Li ZY; Qian DJ
    J Phys Chem B; 2006 Jun; 110(23):11224-31. PubMed ID: 16771388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization, and surface modification of silver nanoparticles in formamide.
    Sarkar A; Kapoor S; Mukherjee T
    J Phys Chem B; 2005 Apr; 109(16):7698-704. PubMed ID: 16851894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.