These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21434685)

  • 1. Enumerating sparse organisms in ships' ballast water: why counting to 10 is not so easy.
    Miller AW; Frazier M; Smith GE; Perry ES; Ruiz GM; Tamburri MN
    Environ Sci Technol; 2011 Apr; 45(8):3539-46. PubMed ID: 21434685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloom forming species transported by ballast water under the management of D-1 and D-2 standards-Implications for current ballast water regulations.
    Chen Y; Xue J; Feng W; Du J; Wu H
    Mar Pollut Bull; 2023 Sep; 194(Pt B):115391. PubMed ID: 37586266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the combined effects of ballast water management and trade dynamics on transfers of marine organisms by ships.
    Carney KJ; Minton MS; Holzer KK; Miller AW; McCann LD; Ruiz GM
    PLoS One; 2017; 12(3):e0172468. PubMed ID: 28319119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and installation of ballast water sample ports: Current status and implications for assessing compliance with discharge standards.
    Drake LA; Bailey SA; Brydges T; Carney KJ; Ruiz GM; Bayly-Stark J; Drillet G; Everett RA
    Mar Pollut Bull; 2021 Jun; 167():112280. PubMed ID: 33799148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting at low concentrations: the statistical challenges of verifying ballast water discharge standards.
    Frazier M; Miller AW; Lee H; Reusser DA
    Ecol Appl; 2013 Mar; 23(2):339-51. PubMed ID: 23634586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States.
    Darling JA; Martinson J; Pagenkopp Lohan KM; Carney KJ; Pilgrim E; Banerji A; Holzer KK; Ruiz GM
    Sci Total Environ; 2020 Dec; 749():141456. PubMed ID: 32846346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to setting organism-based ballast water discharge standards.
    Henry L; Reusser DA; Frazier M
    Ecol Appl; 2013 Mar; 23(2):301-10. PubMed ID: 23634582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥10 to <50 μm.
    Casas-Monroy O; Kydd J; Rozon RM; Bailey SA
    J Environ Manage; 2022 Sep; 317():115300. PubMed ID: 35623126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential effects of LNG trade shift on transfer of ballast water and biota by ships.
    Holzer KK; Muirhead JR; Minton MS; Carney KJ; Miller AW; Ruiz GM
    Sci Total Environ; 2017 Feb; 580():1470-1474. PubMed ID: 28038872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dilution and dispersion of ballast water discharged into Goderich Harbor.
    Wells MG; Bailey SA; Ruddick B
    Mar Pollut Bull; 2011 Jun; 62(6):1288-96. PubMed ID: 21440268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of heterogeneous distributions of organisms on ballast water sampling.
    Costa EG; Lopes RM; Singer JM
    Mar Pollut Bull; 2015 Feb; 91(1):280-7. PubMed ID: 25510550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How many organisms are in ballast water discharge? A framework for validating and selecting compliance monitoring tools.
    Drake LA; Tamburri MN; First MR; Smith GJ; Johengen TH
    Mar Pollut Bull; 2014 Sep; 86(1-2):122-128. PubMed ID: 25110047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballast water regulations and the move toward concentration-based numeric discharge limits.
    Albert RJ; Lishman JM; Saxena JR
    Ecol Appl; 2013 Mar; 23(2):289-300. PubMed ID: 23634581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biological Basis for Ballast Water Performance Standards: "Viable/Non-Viable" or "Live/Dead"?
    Blatchley Iii ER; Cullen JJ; Petri B; Bircher K; Welschmeyer N
    Environ Sci Technol; 2018 Aug; 52(15):8075-8086. PubMed ID: 29927584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Per capita invasion probabilities: an empirical model to predict rates of invasion via ballast water.
    Reusser DA; Lee H; Frazier M; Ruiz GM; Fofonoff PW; Minton MS; Miller AW
    Ecol Appl; 2013 Mar; 23(2):321-30. PubMed ID: 23634584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling sampling strategies for determination of zooplankton abundance in ballast water.
    Hernandez MR; Johansson ML; Xiao Y; Lewis MA; MacIsaac HJ
    Mar Pollut Bull; 2017 Feb; 115(1-2):80-85. PubMed ID: 27912915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships' ballast water.
    Doblin MA; Dobbs FC
    Mar Pollut Bull; 2006 Mar; 52(3):259-63. PubMed ID: 16480748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluate the compliance of ballast water management system on various types of operational vessels based on the D-2 standard.
    Feng W; Chen Y; Zhang T; Xue J; Wu H
    Mar Pollut Bull; 2023 Sep; 194(Pt B):115381. PubMed ID: 37567131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of global port phytoplankton and implications for current ballast water regulations.
    Soler-Figueroa BM; Fontaine DN; Carney KJ; Ruiz GM; Tamburri MN
    Mar Pollut Bull; 2020 Jun; 155():111165. PubMed ID: 32469779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton.
    Bailey SA; Brydges T; Casas-Monroy O; Kydd J; Linley RD; Rozon RM; Darling JA
    Mar Pollut Bull; 2022 Sep; 182():113947. PubMed ID: 35926436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.