These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21434854)
1. Harnessing impaired energy metabolism in cancer cell: small molecule- mediated ways to regulate tumorigenesis. Govardhan KS; Ramyasri K; Kethora D; Ravishekar Y; Prasenjit M Anticancer Agents Med Chem; 2011 Mar; 11(3):272-9. PubMed ID: 21434854 [TBL] [Abstract][Full Text] [Related]
2. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways. Leu WJ; Swain ShP; Chan SH; Hsu JL; Liu SP; Chan ML; Yu CC; Hsu LC; Chou YL; Chang WL; Hou DR; Guh JH Oncotarget; 2016 Nov; 7(47):76995-77009. PubMed ID: 27769069 [TBL] [Abstract][Full Text] [Related]
3. MYC and metabolism on the path to cancer. Hsieh AL; Walton ZE; Altman BJ; Stine ZE; Dang CV Semin Cell Dev Biol; 2015 Jul; 43():11-21. PubMed ID: 26277543 [TBL] [Abstract][Full Text] [Related]
4. Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cerella C; Gaigneaux A; Dicato M; Diederich M Cancer Lett; 2015 Jan; 356(2 Pt A):251-62. PubMed ID: 24530513 [TBL] [Abstract][Full Text] [Related]
5. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Liu Y; Wan WZ; Li Y; Zhou GL; Liu XG Oncotarget; 2017 Jan; 8(4):7181-7200. PubMed ID: 27769061 [TBL] [Abstract][Full Text] [Related]
6. The miR-17∼92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Izreig S; Samborska B; Johnson RM; Sergushichev A; Ma EH; Lussier C; Loginicheva E; Donayo AO; Poffenberger MC; Sagan SM; Vincent EE; Artyomov MN; Duchaine TF; Jones RG Cell Rep; 2016 Aug; 16(7):1915-28. PubMed ID: 27498867 [TBL] [Abstract][Full Text] [Related]
7. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Yu L; Chen X; Wang L; Chen S Oncotarget; 2016 Jun; 7(25):38908-38926. PubMed ID: 26918353 [TBL] [Abstract][Full Text] [Related]
8. Discovery of novel anticancer therapeutics targeting the PI3K/Akt/mTOR pathway. Maira SM; Furet P; Stauffer F Future Med Chem; 2009 Apr; 1(1):137-55. PubMed ID: 21426073 [TBL] [Abstract][Full Text] [Related]
9. Fubp1 supports the lactate-Akt-mTOR axis through the upregulation of Hk1 and Hk2. Kang M; Lee SM; Kim W; Lee KH; Kim DY Biochem Biophys Res Commun; 2019 Apr; 512(1):93-99. PubMed ID: 30871777 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial AKAP1 supports mTOR pathway and tumor growth. Rinaldi L; Sepe M; Delle Donne R; Conte K; Arcella A; Borzacchiello D; Amente S; De Vita F; Porpora M; Garbi C; Oliva MA; Procaccini C; Faicchia D; Matarese G; Zito Marino F; Rocco G; Pignatiello S; Franco R; Insabato L; Majello B; Feliciello A Cell Death Dis; 2017 Jun; 8(6):e2842. PubMed ID: 28569781 [TBL] [Abstract][Full Text] [Related]
12. Jolkinolide B inhibits glycolysis by downregulating hexokinase 2 expression through inactivating the Akt/mTOR pathway in non-small cell lung cancer cells. Gao X; Han H J Cell Biochem; 2018 Jun; 119(6):4967-4974. PubMed ID: 29384225 [TBL] [Abstract][Full Text] [Related]
13. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. Chen KC; Hsu WH; Ho JY; Lin CW; Chu CY; Kandaswami CC; Lee MT; Cheng CH J Food Drug Anal; 2018 Jul; 26(3):1180-1191. PubMed ID: 29976410 [TBL] [Abstract][Full Text] [Related]
14. Energy deregulation: licensing tumors to grow. Garber K Science; 2006 May; 312(5777):1158-9. PubMed ID: 16728625 [No Abstract] [Full Text] [Related]
15. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Yu H; Zhang H; Dong M; Wu Z; Shen Z; Xie Y; Kong Z; Dai X; Xu B Int J Oncol; 2017 Jan; 50(1):161-172. PubMed ID: 27922662 [TBL] [Abstract][Full Text] [Related]
16. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Gomes AS; Ramos H; Soares J; Saraiva L Pharmacol Res; 2018 May; 131():75-86. PubMed ID: 29580896 [TBL] [Abstract][Full Text] [Related]
17. Emerging metabolic targets in cancer therapy. Zhao Y; Liu H; Riker AI; Fodstad O; Ledoux SP; Wilson GL; Tan M Front Biosci (Landmark Ed); 2011 Jan; 16(5):1844-60. PubMed ID: 21196269 [TBL] [Abstract][Full Text] [Related]
18. Oxidative phosphorylation as a target to arrest malignant neoplasias. Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858 [TBL] [Abstract][Full Text] [Related]
19. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Tan J; Li Z; Lee PL; Guan P; Aau MY; Lee ST; Feng M; Lim CZ; Lee EY; Wee ZN; Lim YC; Karuturi RK; Yu Q Cancer Discov; 2013 Oct; 3(10):1156-71. PubMed ID: 23887393 [TBL] [Abstract][Full Text] [Related]
20. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Dang CV; Le A; Gao P Clin Cancer Res; 2009 Nov; 15(21):6479-83. PubMed ID: 19861459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]