These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 21435052)
21. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. Wang X; Chen S; Zhang H; Shi L; Cao F; Guo L; Xie Y; Wang T; Yan X; Dai S J Proteome Res; 2010 Dec; 9(12):6561-77. PubMed ID: 20923197 [TBL] [Abstract][Full Text] [Related]
22. The glycine max xylem sap and apoplast proteome. Djordjevic MA; Oakes M; Li DX; Hwang CH; Hocart CH; Gresshoff PM J Proteome Res; 2007 Sep; 6(9):3771-9. PubMed ID: 17696379 [TBL] [Abstract][Full Text] [Related]
23. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Xu J; Duan X; Yang J; Beeching JR; Zhang P Plant Physiol; 2013 Mar; 161(3):1517-28. PubMed ID: 23344905 [TBL] [Abstract][Full Text] [Related]
24. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions. Swaroopa Rani T; Podile AR Physiol Plant; 2014 Apr; 150(4):565-79. PubMed ID: 24117905 [TBL] [Abstract][Full Text] [Related]
25. The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis. Yan Y; Li M; Ding Z; Yang J; Xie Z; Ye X; Tie W; Tao X; Chen G; Huo K; Ma J; Ye J; Hu W Food Chem; 2024 Nov; 458():140252. PubMed ID: 38964113 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterisation of a cassava catalase expressed during post-harvest physiological deterioration. Reilly K; Han Y; Tohme J; Beeching JR Biochim Biophys Acta; 2001 Apr; 1518(3):317-23. PubMed ID: 11311947 [TBL] [Abstract][Full Text] [Related]
27. RNA splicing modulates the postharvest physiological deterioration of cassava storage root. Gu J; Ma X; Ma Q; Xia Z; Lin Y; Yuan J; Li Y; Li C; Chen Y; Wang W; Zhang P; Wang ZY Plant Physiol; 2024 Sep; 196(1):461-478. PubMed ID: 38635971 [TBL] [Abstract][Full Text] [Related]
28. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204 [TBL] [Abstract][Full Text] [Related]
29. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). Huerta-Ocampo JA; León-Galván MF; Ortega-Cruz LB; Barrera-Pacheco A; De León-Rodríguez A; Mendoza-Hernández G; de la Rosa AP Plant Biol (Stuttg); 2011 May; 13(3):472-82. PubMed ID: 21489098 [TBL] [Abstract][Full Text] [Related]
30. Isobaric tags for relative and absolute quantification- based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. Han B; Chen S; Dai S; Yang N; Wang T J Integr Plant Biol; 2010 Dec; 52(12):1043-58. PubMed ID: 21106004 [TBL] [Abstract][Full Text] [Related]
31. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes. Sornyotha S; Kyu KL; Ratanakhanokchai K J Biosci Bioeng; 2010 Jan; 109(1):9-14. PubMed ID: 20129074 [TBL] [Abstract][Full Text] [Related]
32. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Bayoumi SA; Rowan MG; Beeching JR; Blagbrough IS Phytochemistry; 2010 Apr; 71(5-6):598-604. PubMed ID: 20137795 [TBL] [Abstract][Full Text] [Related]
33. Proteome analysis of tobacco leaves under salt stress. Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571 [TBL] [Abstract][Full Text] [Related]
34. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. Khan MN; Sakata K; Hiraga S; Komatsu S J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625 [TBL] [Abstract][Full Text] [Related]
35. Comparative Proteome Analysis of the Tuberous Roots of Six Cassava (Manihot esculenta) Varieties Reveals Proteins Related to Phenotypic Traits. Schmitz GJ; de Magalhães Andrade J; Valle TL; Labate CA; do Nascimento JR J Agric Food Chem; 2016 Apr; 64(16):3293-301. PubMed ID: 26982619 [TBL] [Abstract][Full Text] [Related]
36. Identification of NaCl and NaHCO3 stress responsive proteins in tomato roots using iTRAQ-based analysis. Gong B; Zhang C; Li X; Wen D; Wang S; Shi Q; Wang X Biochem Biophys Res Commun; 2014 Mar; 446(1):417-22. PubMed ID: 24613841 [TBL] [Abstract][Full Text] [Related]
37. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
38. Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC-ESI-MS/MS. Liu T; Huang C; Shen C; Shi J Appl Biochem Biotechnol; 2015 Jun; 176(4):1174-94. PubMed ID: 25926012 [TBL] [Abstract][Full Text] [Related]
39. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Requejo R; Tena M Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037 [TBL] [Abstract][Full Text] [Related]