BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21435062)

  • 1. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris.
    Ikeno T; Katagiri C; Numata H; Goto SG
    Insect Mol Biol; 2011 Jun; 20(3):409-15. PubMed ID: 21435062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males.
    Ikeno T; Numata H; Goto SG
    J Insect Physiol; 2011 Jul; 57(7):935-8. PubMed ID: 21550348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions.
    Ikeno T; Numata H; Goto SG
    Gene; 2008 Aug; 419(1-2):56-61. PubMed ID: 18547745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiodic diapause under the control of circadian clock genes in an insect.
    Ikeno T; Tanaka SI; Numata H; Goto SG
    BMC Biol; 2010 Sep; 8():116. PubMed ID: 20815865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking.
    Maywood ES; Chesham JE; Meng QJ; Nolan PM; Loudon AS; Hastings MH
    J Neurosci; 2011 Jan; 31(4):1539-44. PubMed ID: 21273438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks.
    Yuan Q; Metterville D; Briscoe AD; Reppert SM
    Mol Biol Evol; 2007 Apr; 24(4):948-55. PubMed ID: 17244599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Tomioka K; Numata H
    J Biol Rhythms; 2011 Feb; 26(1):14-23. PubMed ID: 21252362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation.
    Matsumura R; Yoshimi K; Sawai Y; Yasumune N; Kajihara K; Maejima T; Koide T; Node K; Akashi M
    Cell Rep; 2022 Apr; 39(3):110703. PubMed ID: 35443162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex.
    Padmanabhan K; Robles MS; Westerling T; Weitz CJ
    Science; 2012 Aug; 337(6094):599-602. PubMed ID: 22767893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock outputs regulating insect photoperiodism: A potential role for glutamate transporter.
    Des Marteaux L; Xi J; Mano G; Goto SG
    Biochem Biophys Res Commun; 2022 Jan; 589():100-106. PubMed ID: 34902745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Shiga S; Tomioka K; Numata H
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8446-51. PubMed ID: 18539772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The circadian clock genes affect reproductive capacity in the desert locust Schistocerca gregaria.
    Tobback J; Boerjan B; Vandersmissen HP; Huybrechts R
    Insect Biochem Mol Biol; 2011 May; 41(5):313-21. PubMed ID: 21295143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence and expression of per, tim1, and cry2 genes in the Madeira cockroach Rhyparobia maderae.
    Werckenthin A; Derst C; Stengl M
    J Biol Rhythms; 2012 Dec; 27(6):453-66. PubMed ID: 23223371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.
    Mulder C; Van Der Zee EA; Hut RA; Gerkema MP
    J Biol Rhythms; 2013 Dec; 28(6):367-79. PubMed ID: 24336415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.
    Reppert SM
    Cold Spring Harb Symp Quant Biol; 2007; 72():113-8. PubMed ID: 18419268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila.
    Rakshit K; Giebultowicz JM
    Aging Cell; 2013 Oct; 12(5):752-62. PubMed ID: 23692507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oviposition-promoting pars intercerebralis neurons show
    Hasebe M; Shiga S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33622784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping.
    Putker M; Wong DCS; Seinkmane E; Rzechorzek NM; Zeng A; Hoyle NP; Chesham JE; Edwards MD; Feeney KA; Fischer R; Peschel N; Chen KF; Vanden Oever M; Edgar RS; Selby CP; Sancar A; O'Neill JS
    EMBO J; 2021 Apr; 40(7):e106745. PubMed ID: 33491228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.