These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21435357)

  • 1. Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
    Watanabe S; Mayer U; Bischof HJ
    Behav Brain Res; 2011 Sep; 222(1):51-6. PubMed ID: 21435357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern discrimination is affected by entopallial but not by hippocampal lesions in zebra finches.
    Watanabe S; Mayer U; Bischof HJ
    Behav Brain Res; 2008 Jul; 190(2):201-5. PubMed ID: 18384892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of the thalamofugal visual pathway in a coarse pattern discrimination task in an open arena.
    Budzynski CA; Bingman VP
    Behav Brain Res; 2004 Aug; 153(2):543-56. PubMed ID: 15265653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain activation pattern depends on the strategy chosen by zebra finches to solve an orientation task.
    Mayer U; Bischof HJ
    J Exp Biol; 2012 Feb; 215(Pt 3):426-34. PubMed ID: 22246251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata).
    Michael N; Löwel S; Bischof HJ
    PLoS One; 2015; 10(4):e0124917. PubMed ID: 25853253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of lesions of telencephalic visual structures on visual discriminative performance in turtles (Chrysemys picta picta).
    Reiner A; Powers AS
    J Comp Neurol; 1983 Jul; 218(1):1-24. PubMed ID: 6886065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of GABAergic neurons within the tectofugal visual system of white zebra finches.
    Wonderschütz P; Bischof HJ
    Behav Brain Res; 2006 Jun; 170(1):163-6. PubMed ID: 16546270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imprinting modulates processing of visual information in the visual wulst of chicks.
    Maekawa F; Komine O; Sato K; Kanamatsu T; Uchimura M; Tanaka K; Ohki-Hamazaki H
    BMC Neurosci; 2006 Nov; 7():75. PubMed ID: 17101060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate.
    Cain DP; Boon F; Corcoran ME
    Behav Brain Res; 2006 Jun; 170(2):241-56. PubMed ID: 16569442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The disassociation of visual and acoustic conspecific cues decreases discrimination by female zebra finches (Taeniopygia guttata).
    Campbell DL; Hauber ME
    J Comp Psychol; 2009 Aug; 123(3):310-5. PubMed ID: 19685973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required.
    Gaffan EA; Bannerman DM; Healey AN
    Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of pigeon (Columba livia) Wulst neurons during acquisition and reversal of a visual discrimination task.
    Bingman VP; Gasser B; Colombo M
    Behav Neurosci; 2008 Oct; 122(5):1139-47. PubMed ID: 18823169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hippocampal lesions on acquisition and retention of spatial learning in zebra finches.
    Watanabe S; Bischof HJ
    Behav Brain Res; 2004 Nov; 155(1):147-52. PubMed ID: 15325788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial choices of macaque monkeys based on the visual representation of the response space: rotation of the stimuli.
    Nedvidek J; Nekovarova T; Bures J
    Behav Brain Res; 2008 Nov; 193(2):204-8. PubMed ID: 18588916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateralized reward-related visual discrimination in the avian entopallium.
    Verhaal J; Kirsch JA; Vlachos I; Manns M; Güntürkün O
    Eur J Neurosci; 2012 Apr; 35(8):1337-43. PubMed ID: 22452655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperstriatum ventrale in pigeons: effects of lesions on color-discrimination and color-reversal learning.
    Chaves LM; Hodos W
    Vis Neurosci; 1997; 14(6):1029-41. PubMed ID: 9447686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localisation of orientation-selective neurons within the thalamus and striopallidar nuclei of the human brain.
    Abdullaev YG; Medvedev SV
    Act Nerv Super (Praha); 1989 Jun; 31(2):93-5. PubMed ID: 2800970
    [No Abstract]   [Full Text] [Related]  

  • 18. Visual cortical areas mediating form discrimination in the cat.
    Sprague JM; Levy J; DiBerardino A; Berlucchi G
    J Comp Neurol; 1977 Apr; 172(3):441-88. PubMed ID: 838888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of mirror-image stimuli after lesions of the visual system in pigeons.
    Weiss SR; Hodos W
    Brain Behav Evol; 1986; 29(3-4):207-22. PubMed ID: 3594204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of perirhinal cortex in visual discrimination learning for visual secondary reinforcement in rats.
    Eacott MJ; Norman G; Gaffan EA
    Behav Neurosci; 2003 Dec; 117(6):1318-25. PubMed ID: 14674850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.