BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21435506)

  • 1. The role of p53 in ribosomopathies.
    Fumagalli S; Thomas G
    Semin Hematol; 2011 Apr; 48(2):97-105. PubMed ID: 21435506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guarding the 'translation apparatus': defective ribosome biogenesis and the p53 signaling pathway.
    Chakraborty A; Uechi T; Kenmochi N
    Wiley Interdiscip Rev RNA; 2011; 2(4):507-22. PubMed ID: 21957040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Altered Ribosome Production Can Cause or Contribute to Human Disease: The Spectrum of Ribosomopathies.
    Venturi G; Montanaro L
    Cells; 2020 Oct; 9(10):. PubMed ID: 33076379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome.
    Burwick N; Shimamura A; Liu JM
    Semin Hematol; 2011 Apr; 48(2):136-43. PubMed ID: 21435510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the mechanisms underlying human diseases in making ribosomes.
    Farley KI; Baserga SJ
    Biochem Soc Trans; 2016 Aug; 44(4):1035-44. PubMed ID: 27528749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the mTOR pathway by the amino acid (L)-leucine in the 5q- syndrome and other ribosomopathies.
    Boultwood J; Yip BH; Vuppusetty C; Pellagatti A; Wainscoat JS
    Adv Biol Regul; 2013 Jan; 53(1):8-17. PubMed ID: 23031788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autogenous Control of 5′TOP mRNA Stability by 40S Ribosomes.
    Gentilella A; Morón-Duran FD; Fuentes P; Zweig-Rocha G; Riaño-Canalias F; Pelletier J; Ruiz M; Turón G; Castaño J; Tauler A; Bueno C; Menéndez P; Kozma SC; Thomas G
    Mol Cell; 2017 Jul; 67(1):55-70.e4. PubMed ID: 28673543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomopathies: human disorders of ribosome dysfunction.
    Narla A; Ebert BL
    Blood; 2010 Apr; 115(16):3196-205. PubMed ID: 20194897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into 5q- syndrome as a ribosomopathy.
    Barlow JL; Drynan LF; Trim NL; Erber WN; Warren AJ; McKenzie AN
    Cell Cycle; 2010 Nov; 9(21):4286-93. PubMed ID: 20980806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.
    Bursac S; Brdovcak MC; Donati G; Volarevic S
    Biochim Biophys Acta; 2014 Jun; 1842(6):817-30. PubMed ID: 24514102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.
    Calo E; Gu B; Bowen ME; Aryan F; Zalc A; Liang J; Flynn RA; Swigut T; Chang HY; Attardi LD; Wysocka J
    Nature; 2018 Feb; 554(7690):112-117. PubMed ID: 29364875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.
    Noack Watt KE; Achilleos A; Neben CL; Merrill AE; Trainor PA
    PLoS Genet; 2016 Jul; 12(7):e1006187. PubMed ID: 27448281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth control and ribosomopathies.
    Teng T; Thomas G; Mercer CA
    Curr Opin Genet Dev; 2013 Feb; 23(1):63-71. PubMed ID: 23490481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development.
    Zhao C; Andreeva V; Gibert Y; LaBonty M; Lattanzi V; Prabhudesai S; Zhou Y; Zon L; McCann KL; Baserga S; Yelick PC
    PLoS Genet; 2014 Jan; 10(1):e1004074. PubMed ID: 24497835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 activation during ribosome biogenesis regulates normal erythroid differentiation.
    Le Goff S; Boussaid I; Floquet C; Raimbault A; Hatin I; Andrieu-Soler C; Salma M; Leduc M; Gautier EF; Guyot B; d'Allard D; Montel-Lehry N; Ducamp S; Houvert A; Guillonneau F; Giraudier S; Cramer-Bordé E; Morlé F; Diaz JJ; Hermine O; Taylor N; Kinet S; Verdier F; Padua RA; Mohandas N; Gleizes PE; Soler E; Mayeux P; Fontenay M
    Blood; 2021 Jan; 137(1):89-102. PubMed ID: 32818241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function.
    Jones NC; Lynn ML; Gaudenz K; Sakai D; Aoto K; Rey JP; Glynn EF; Ellington L; Du C; Dixon J; Dixon MJ; Trainor PA
    Nat Med; 2008 Feb; 14(2):125-33. PubMed ID: 18246078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure.
    Ear J; Hsueh J; Nguyen M; Zhang Q; Sung V; Chopra R; Sakamoto KM; Lin S
    J Genet Genomics; 2016 May; 43(5):307-18. PubMed ID: 27216296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis-Cincinnati type.
    Watt KEN; Neben CL; Hall S; Merrill AE; Trainor PA
    Hum Mol Genet; 2018 Aug; 27(15):2628-2643. PubMed ID: 29750247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5q- syndrome.
    Boultwood J; Pellagatti A; Wainscoat JS
    Curr Pharm Des; 2012; 18(22):3180-3. PubMed ID: 22571696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells.
    Turi Z; Senkyrikova M; Mistrik M; Bartek J; Moudry P
    Cell Cycle; 2018; 17(1):92-101. PubMed ID: 29143558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.