BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 21435676)

  • 1. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.
    Favas PJ; Pratas J; Prasad MN
    Sci Total Environ; 2012 Sep; 433():390-7. PubMed ID: 22820614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of fluoride contamination in water by three aquatic plants.
    Karmakar S; Mukherjee J; Mukherjee S
    Int J Phytoremediation; 2016; 18(3):222-7. PubMed ID: 26247406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent.
    Mishra VK; Tripathi BD; Kim KH
    J Hazard Mater; 2009 Dec; 172(2-3):749-54. PubMed ID: 19665290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation potential of selected plants for nitrate and phosphorus from ground water.
    Sundaralingam T; Gnanavelrajah N
    Int J Phytoremediation; 2014; 16(3):275-84. PubMed ID: 24912224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.
    Zhang X; Lin AJ; Zhao FJ; Xu GZ; Duan GL; Zhu YG
    Environ Pollut; 2008 Dec; 156(3):1149-55. PubMed ID: 18457908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation.
    Rahman MA; Hasegawa H; Ueda K; Maki T; Okumura C; Rahman MM
    Chemosphere; 2007 Sep; 69(3):493-9. PubMed ID: 17509657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.
    Chen G; Liu X; Brookes PC; Xu J
    Int J Phytoremediation; 2015; 17(1-6):249-55. PubMed ID: 25397983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.
    Rai PK
    Environ Monit Assess; 2009 Nov; 158(1-4):433-57. PubMed ID: 18998227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India.
    Mishra S; Mohanty M; Pradhan C; Patra HK; Das R; Sahoo S
    Environ Monit Assess; 2013 May; 185(5):4347-59. PubMed ID: 22993029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the potential of biological treatment for arsenic contaminated soils and groundwater.
    Wang S; Zhao X
    J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.
    Rai PK
    Int J Phytoremediation; 2008; 10(5):430-9. PubMed ID: 19260224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.