BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21435849)

  • 21. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility.
    Niu X; Luo Y; Li Y; Fu C; Chen J; Wang Y
    J Biomed Mater Res A; 2008 Mar; 84(4):908-16. PubMed ID: 17647223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pre-osteoblasts on poly(L-lactic acid) and silicon oxide: Influence of fibronectin and albumin adsorption.
    Hindié M; Degat MC; Gaudière F; Gallet O; Van Tassel PR; Pauthe E
    Acta Biomater; 2011 Jan; 7(1):387-94. PubMed ID: 20692384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(D,L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro.
    Cai K; Yao K; Lin S; Yang Z; Li X; Xie H; Qing T; Gao L
    Biomaterials; 2002 Feb; 23(4):1153-60. PubMed ID: 11791919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride.
    Cao C; Zhu F; Yu X; Wang Q; Wang C; Li B; Lv R; Li M
    Biomed Mater; 2008 Mar; 3(1):015002. PubMed ID: 18458489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.
    Datta P; Chatterjee J; Dhara S
    J Biomater Sci Polym Ed; 2013; 24(6):696-713. PubMed ID: 23565910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix.
    Hu J; Liu X; Ma PX
    Biomaterials; 2008 Oct; 29(28):3815-21. PubMed ID: 18617260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro.
    Cai K; Yao K; Cui Y; Lin S; Yang Z; Li X; Xie H; Qing T; Luo J
    J Biomed Mater Res; 2002 Jun; 60(3):398-404. PubMed ID: 11920663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT
    J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization.
    Ma Z; Chen F; Zhu YJ; Cui T; Liu XY
    J Colloid Interface Sci; 2011 Jul; 359(2):371-9. PubMed ID: 21536302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.
    Mahjoubi H; Kinsella JM; Murshed M; Cerruti M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9975-87. PubMed ID: 24965034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Compatibility of a novel ethylenediamine modified polylactic acid with osteoblasts].
    Su A; Wang Y; Luo Y; Wu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):708-10. PubMed ID: 16156255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinate expression of novel genes during osteoblast differentiation.
    Seth A; Lee BK; Qi S; Vary CP
    J Bone Miner Res; 2000 Sep; 15(9):1683-96. PubMed ID: 10976989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation.
    Fang HW; Kao WY; Lin PI; Chang GW; Hung YJ; Chen RM
    Ann Biomed Eng; 2015 Aug; 43(8):1999-2009. PubMed ID: 25549776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.
    Li N; Chen G; Liu J; Xia Y; Chen H; Tang H; Zhang F; Gu N
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17134-43. PubMed ID: 25211771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fidgetin-like 1 gene inhibited by basic fibroblast growth factor regulates the proliferation and differentiation of osteoblasts.
    Park SJ; Kim SJ; Rhee Y; Byun JH; Kim SH; Kim MH; Lee EJ; Lim SK
    J Bone Miner Res; 2007 Jun; 22(6):889-96. PubMed ID: 17352653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B; Cai Q; Zhang S; Yang X; Deng X
    J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ forming lactic acid based orthopaedic biomaterials: influence of oligomer chemistry on osteoblast attachment and function.
    Burdick JA; Mason MN; Anseth KS
    J Biomater Sci Polym Ed; 2001; 12(11):1253-65. PubMed ID: 11853390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds].
    Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF
    Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds.
    Idris SB; Bolstad AI; Ibrahim SO; Dånmark S; Finne-Wistrand A; Albertsson AC; Arvidson K; Mustafa K
    Tissue Eng Part A; 2011 Nov; 17(21-22):2817-31. PubMed ID: 21905880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.