BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 21436267)

  • 1. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC
    Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei.
    Zhou HY; Yan H; Wang LL; Yan WJ; Shui YB; Beebe DC
    Proteomics Clin Appl; 2015 Aug; 9(7-8):776-86. PubMed ID: 25418515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes.
    Su S; Leng F; Guan L; Zhang L; Ge J; Wang C; Chen S; Liu P
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7848-61. PubMed ID: 25406277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP; Srivastava K; Chaves JM
    Mol Vis; 2008; 14():1872-85. PubMed ID: 18949065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths.
    Zhou H; Yan H; Yan W; Wang X; Ma Y; Wang J
    Mol Vis; 2016; 22():933-43. PubMed ID: 27559289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y
    Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses.
    Hains PG; Truscott RJ
    Biochim Biophys Acta; 2008 Dec; 1784(12):1959-64. PubMed ID: 18761110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking pathology with proteomics: identification of in vivo degradation products of alphaB-crystallin.
    Colvis CM; Duglas-Tabor Y; Werth KB; Vieira NE; Kowalak JA; Janjani A; Yergey AL; Garland DL
    Electrophoresis; 2000 Jun; 21(11):2219-27. PubMed ID: 10892732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.