These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21436521)

  • 1. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus.
    Krusienski DJ; Shih JJ
    J Neural Eng; 2011 Apr; 8(2):025006. PubMed ID: 21436521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signals from intraventricular depth electrodes can control a brain-computer interface.
    Shih JJ; Krusienski DJ
    J Neurosci Methods; 2012 Jan; 203(2):311-4. PubMed ID: 22044847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECoG factors underlying multimodal control of a brain-computer interface.
    Wilson JA; Felton EA; Garell PC; Schalk G; Williams JC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):246-50. PubMed ID: 16792305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of a visual keyboard using an electrocorticographic brain-computer interface.
    Krusienski DJ; Shih JJ
    Neurorehabil Neural Repair; 2011 May; 25(4):323-31. PubMed ID: 20921326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer control using human intracortical local field potentials.
    Kennedy PR; Kirby MT; Moore MM; King B; Mallory A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):339-44. PubMed ID: 15473196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCI Meeting 2005--workshop on signals and recording methods.
    Wolpaw JR; Loeb GE; Allison BZ; Donchin E; do Nascimento OF; Heetderks WJ; Nijboer F; Shain WG; Turner JN
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):138-41. PubMed ID: 16792279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GIBS block speller: toward a gaze-independent P300-based BCI.
    Pires G; Nunes U; Castelo-Branco M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6360-4. PubMed ID: 22255793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interface research at the wadsworth center developments in noninvasive communication and control.
    Krusienski DJ; Wolpaw JR
    Int Rev Neurobiol; 2009; 86():147-57. PubMed ID: 19607997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BCI Meeting 2005--workshop on clinical issues and applications.
    Kübler A; Mushahwar VK; Hochberg LR; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):131-4. PubMed ID: 16792277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P300 Chinese input system based on Bayesian LDA.
    Jin J; Allison BZ; Brunner C; Wang B; Wang X; Zhang J; Neuper C; Pfurtscheller G
    Biomed Tech (Berl); 2010 Feb; 55(1):5-18. PubMed ID: 20128741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interface technology: a review of the first international meeting.
    Wolpaw JR; Birbaumer N; Heetderks WJ; McFarland DJ; Peckham PH; Schalk G; Donchin E; Quatrano LA; Robinson CJ; Vaughan TM
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):164-73. PubMed ID: 10896178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
    McFarland DJ; Anderson CW; Müller KR; Schlögl A; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):135-8. PubMed ID: 16792278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.