BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21436524)

  • 1. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities.
    Leeb R; Sagha H; Chavarriaga R; Millán Jdel R
    J Neural Eng; 2011 Apr; 8(2):025011. PubMed ID: 21436524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal fusion of muscle and brain signals for a hybrid-BCI.
    Leeb R; Sagha H; Chavarriaga R; Del R Millan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4343-6. PubMed ID: 21096001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface.
    Kübler A; Nijboer F; Mellinger J; Vaughan TM; Pawelzik H; Schalk G; McFarland DJ; Birbaumer N; Wolpaw JR
    Neurology; 2005 May; 64(10):1775-7. PubMed ID: 15911809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional cortico-muscular coupling during upright standing in athletes and nonathletes: a coherence electroencephalographic-electromyographic study.
    Vecchio F; Del Percio C; Marzano N; Fiore A; Toran G; Aschieri P; Gallamini M; Cabras J; Rossini PM; Babiloni C; Eusebi F
    Behav Neurosci; 2008 Aug; 122(4):917-27. PubMed ID: 18729645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of covariate shift adaptation techniques in brain-computer interfaces.
    Li Y; Kambara H; Koike Y; Sugiyama M
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1318-24. PubMed ID: 20172795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal neuroelectric interface development.
    Trejo LJ; Wheeler KR; Jorgensen CC; Rosipal R; Clanton ST; Matthews B; Hibbs AD; Matthews R; Krupka M
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):199-204. PubMed ID: 12899274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface.
    Wei Q; Wang Y; Gao X; Gao S
    J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical bayesian framework for brain-computer interfaces.
    Lei X; Yang P; Yao D
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):521-9. PubMed ID: 19622442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    J Neural Eng; 2007 Jun; 4(2):R32-57. PubMed ID: 17409474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
    Pichiorri F; De Vico Fallani F; Cincotti F; Babiloni F; Molinari M; Kleih SC; Neuper C; Kübler A; Mattia D
    J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.