These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21436531)

  • 1. Volitional control of single cortical neurons in a brain-machine interface.
    Moritz CT; Fetz EE
    J Neural Eng; 2011 Apr; 8(2):025017. PubMed ID: 21436531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of the cingulate cortex for neural control.
    Marzullo TC; Miller CR; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):401-9. PubMed ID: 17190032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal mechanisms underlying control of a brain-computer interface.
    Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N
    Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
    Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.
    Flint RD; Scheid MR; Wright ZA; Solla SA; Slutzky MW
    J Neurosci; 2016 Mar; 36(12):3623-32. PubMed ID: 27013690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online brain-machine interface using decoding of movement direction from the human electrocorticogram.
    Milekovic T; Fischer J; Pistohl T; Ruescher J; Schulze-Bonhage A; Aertsen A; Rickert J; Ball T; Mehring C
    J Neural Eng; 2012 Aug; 9(4):046003. PubMed ID: 22713666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of anterior insular cortex activity using real-time fMRI.
    Caria A; Veit R; Sitaram R; Lotze M; Weiskopf N; Grodd W; Birbaumer N
    Neuroimage; 2007 Apr; 35(3):1238-46. PubMed ID: 17336094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volitional control of neural activity: implications for brain-computer interfaces.
    Fetz EE
    J Physiol; 2007 Mar; 579(Pt 3):571-9. PubMed ID: 17234689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning.
    Clancy KB; Koralek AC; Costa RM; Feldman DE; Carmena JM
    Nat Neurosci; 2014 Jun; 17(6):807-809. PubMed ID: 24728268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer communication and slow cortical potentials.
    Hinterberger T; Schmidt S; Neumann N; Mellinger J; Blankertz B; Curio G; Birbaumer N
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1011-8. PubMed ID: 15188872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex.
    Chase SM; Kass RE; Schwartz AB
    J Neurophysiol; 2012 Jul; 108(2):624-44. PubMed ID: 22496532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
    Crutcher MD; Russo GS; Ye S; Backus DA
    Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical modulations increase in early sessions with brain-machine interface.
    Zacksenhouse M; Lebedev MA; Carmena JM; O'Doherty JE; Henriquez C; Nicolelis MA
    PLoS One; 2007 Jul; 2(7):e619. PubMed ID: 17637835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model analyses of visual biofeedback training for EEG-based brain-computer interface.
    Chen CW; Ju MS; Sun YN; Lin CC
    J Comput Neurosci; 2009 Dec; 27(3):357-68. PubMed ID: 19357940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a brain-computer interface without spike sorting.
    Fraser GW; Chase SM; Whitford A; Schwartz AB
    J Neural Eng; 2009 Oct; 6(5):055004. PubMed ID: 19721186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible large-scale modification of cortical networks during neuroprosthetic control.
    Ganguly K; Dimitrov DF; Wallis JD; Carmena JM
    Nat Neurosci; 2011 May; 14(5):662-7. PubMed ID: 21499255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI).
    Hinterberger T; Weiskopf N; Veit R; Wilhelm B; Betta E; Birbaumer N
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):971-4. PubMed ID: 15188866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring cortical activity - we will only detect what we are looking for.
    Jacobs J
    Clin Neurophysiol; 2010 Mar; 121(3):268-9. PubMed ID: 20005165
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.