BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21436546)

  • 1. Hybrid activated sludge/biofilm process for the treatment of municipal wastewater in a cold climate region: a case study.
    Di Trapani D; Christensso M; Odegaard H
    Water Sci Technol; 2011; 63(6):1121-9. PubMed ID: 21436546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between hybrid moving bed biofilm reactor and activated sludge system: a pilot plant experiment.
    Di Trapani D; Mannina G; Torregrossa M; Viviani G
    Water Sci Technol; 2010; 61(4):891-902. PubMed ID: 20182067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.
    Tam HL; Tang DT; Leung WY; Ho KM; Greenfield PF
    Water Sci Technol; 2004; 50(10):59-65. PubMed ID: 15656296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wastewater treatment in a hybrid activated sludge baffled reactor.
    Tizghadam M; Dagot C; Baudu M
    J Hazard Mater; 2008 Jun; 154(1-3):550-7. PubMed ID: 18078710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area.
    Christensson M; Welander T
    Water Sci Technol; 2004; 49(11-12):207-14. PubMed ID: 15303743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.
    Sen D; Randall CW
    Water Environ Res; 2008 May; 80(5):439-53. PubMed ID: 18605383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.
    Tawfik A; El-Gohary F; Temmink H
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):267-76. PubMed ID: 19404682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change impacts on activated sludge wastewater treatment: a case study from Norway.
    Plósz BG; Liltved H; Ratnaweera H
    Water Sci Technol; 2009; 60(2):533-41. PubMed ID: 19633397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen removal from sludge water with SBR process: start-up of a full-scale plant in the municipal wastewater treatment plant at Ingolstadt, Germany.
    Vallés-Morales MJ; Mendoza-Roca JA; Bes-Piá A; Iborra-Clar A
    Water Sci Technol; 2004; 50(10):51-8. PubMed ID: 15656295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors.
    Salvetti R; Azzellino A; Canziani R; Bonomo L
    Water Res; 2006 Aug; 40(15):2981-93. PubMed ID: 16842837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of the BIOFIX-process for treatment of municipal wastewater.
    Temmink H; Klapwijk A; de Korte KF
    Water Sci Technol; 2001; 43(1):241-9. PubMed ID: 11379097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.
    Comett-Ambriz I; Gonzalez-Martinez S; Wilderer P
    Water Sci Technol; 2003; 47(12):155-61. PubMed ID: 12926683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems.
    Kim HS; Gellner JW; Boltz JP; Freudenberg RG; Gunsch CK; Schuler AJ
    Water Res; 2010 Mar; 44(5):1553-61. PubMed ID: 20056512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen removal assessment through nitrification rates and media biofilm accumulation in an IFAS process demonstration study.
    Regmi P; Thomas W; Schafran G; Bott C; Rutherford B; Waltrip D
    Water Res; 2011 Dec; 45(20):6699-708. PubMed ID: 22040713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.
    Sundaresan N; Philip L
    Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological nutrient removal in simple dual sludge system with an UMBR (upflow multi-layer bioreactor) and aerobic biofilm reactor.
    Kwon JC; Park HS; An JY; Shim KB; Kim YH; Shin HS
    Water Sci Technol; 2005; 52(10-11):443-51. PubMed ID: 16459820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temperature and sludge age on COD removal and nitrification in a moving bed sequencing batch biofilm reactor.
    Dulkadiroglu H; Cokgor EU; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):95-103. PubMed ID: 16114622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material.
    Walters E; Hille A; He M; Ochmann C; Horn H
    Water Res; 2009 Oct; 43(18):4461-8. PubMed ID: 19640560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.
    Kaindl N
    Water Sci Technol; 2010; 62(11):2710-9. PubMed ID: 21099060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.