These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 21436878)
1. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. Zhao Y; Zhang Y; Cao Y; Qi J; Mao L; Xue Y; Gao F; Peng H; Wang X; Gao GF; Ma Y PLoS One; 2011 Jan; 6(1):e14608. PubMed ID: 21436878 [TBL] [Abstract][Full Text] [Related]
2. Characterization and gene cloning of a novel beta-mannanase from alkaliphilic Bacillus sp. N16-5. Ma Y; Xue Y; Dou Y; Xu Z; Tao W; Zhou P Extremophiles; 2004 Dec; 8(6):447-54. PubMed ID: 15316858 [TBL] [Abstract][Full Text] [Related]
3. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation. Bai W; Zhou C; Zhao Y; Wang Q; Ma Y PLoS One; 2015; 10(7):e0132834. PubMed ID: 26161643 [TBL] [Abstract][Full Text] [Related]
4. [Alkaline-adapted beta-mannanase of Bacillus pumilus: gene heterologous expression and enzyme characterization]. Tang J; Guo S; Wang W; Wei W; Wei D Wei Sheng Wu Xue Bao; 2015 Nov; 55(11):1445-57. PubMed ID: 26915226 [TBL] [Abstract][Full Text] [Related]
5. Crystallization and preliminary X-ray study of alkaline beta-mannanase from the alkaliphilic Bacillus sp. N16-5. Zhao Y; Zhang Y; Gao F; Xue Y; Zeng Y; Ma Y Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Oct; 64(Pt 10):957-9. PubMed ID: 18931445 [TBL] [Abstract][Full Text] [Related]
6. Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11. Chauhan PS; Tripathi SP; Sangamwar AT; Puri N; Sharma P; Gupta N Appl Microbiol Biotechnol; 2015 Nov; 99(21):8917-25. PubMed ID: 25967652 [TBL] [Abstract][Full Text] [Related]
7. Functional and structural investigation of a novel β-mannanase BaMan113A from Bacillus sp. N16-5. Liu W; Ma C; Liu W; Zheng Y; Chen CC; Liang A; Luo X; Li Z; Ma W; Song Y; Guo RT; Zhang T Int J Biol Macromol; 2021 Jul; 182():899-909. PubMed ID: 33865894 [TBL] [Abstract][Full Text] [Related]
8. A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Zang H; Xie S; Wu H; Wang W; Shao X; Wu L; Rajer FU; Gao X Enzyme Microb Technol; 2015 Oct; 78():1-9. PubMed ID: 26215338 [TBL] [Abstract][Full Text] [Related]
9. Insights into Structure and Reaction Mechanism of β-Mannanases. Sharma K; Dhillon A; Goyal A Curr Protein Pept Sci; 2018; 19(1):34-47. PubMed ID: 27739373 [TBL] [Abstract][Full Text] [Related]
10. Understanding how diverse beta-mannanases recognize heterogeneous substrates. Tailford LE; Ducros VM; Flint JE; Roberts SM; Morland C; Zechel DL; Smith N; Bjørnvad ME; Borchert TV; Wilson KS; Davies GJ; Gilbert HJ Biochemistry; 2009 Jul; 48(29):7009-18. PubMed ID: 19441796 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Zhang W; Liu Z; Zhou S; Mou H; Zhang R Enzyme Microb Technol; 2019 May; 124():70-78. PubMed ID: 30797481 [TBL] [Abstract][Full Text] [Related]
12. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Hatada Y; Takeda N; Hirasawa K; Ohta Y; Usami R; Yoshida Y; Grant WD; Ito S; Horikoshi K Extremophiles; 2005 Dec; 9(6):497-500. PubMed ID: 15999223 [TBL] [Abstract][Full Text] [Related]
13. Metal-dependent thermal stability of recombinant endo-mannanase (ManB-1601) belonging to family GH 26 from Bacillus sp. CFR1601. Srivastava PK; Appu Rao G AR; Kapoor M Enzyme Microb Technol; 2016 Mar; 84():41-9. PubMed ID: 26827773 [TBL] [Abstract][Full Text] [Related]
14. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261 [TBL] [Abstract][Full Text] [Related]
15. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Kim MK; An YJ; Song JM; Jeong CS; Kang MH; Kwon KK; Lee YH; Cha SS Proteins; 2014 Nov; 82(11):3217-23. PubMed ID: 25082572 [TBL] [Abstract][Full Text] [Related]
16. Gene cloning, expression, and X-ray crystallographic analysis of a β-mannanase from Eisenia fetida. Ueda M; Hirano Y; Fukuhara H; Naka Y; Nakazawa M; Sakamoto T; Ogata Y; Tamada T Enzyme Microb Technol; 2018 Oct; 117():15-22. PubMed ID: 30037547 [TBL] [Abstract][Full Text] [Related]
17. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Kumagai Y; Kawakami K; Mukaihara T; Kimura M; Hatanaka T Biochimie; 2012 Dec; 94(12):2783-90. PubMed ID: 23009928 [TBL] [Abstract][Full Text] [Related]
18. High level expression of a truncated β-mannanase from alkaliphilic Bacillus sp. N16-5 in Kluyveromyces cicerisporus. Pan X; Zhou J; Tian A; Le K; Yuan H; Xue Y; Ma Y; Lu H Biotechnol Lett; 2011 Mar; 33(3):565-70. PubMed ID: 21053049 [TBL] [Abstract][Full Text] [Related]
19. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Zhou C; Xue Y; Ma Y Microb Cell Fact; 2018 Aug; 17(1):124. PubMed ID: 30098601 [TBL] [Abstract][Full Text] [Related]
20. Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Dubnovitsky AP; Kapetaniou EG; Papageorgiou AC Protein Sci; 2005 Jan; 14(1):97-110. PubMed ID: 15608117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]